期刊文献+

北京平原地下水水位监测网优化 被引量:44

Optimum design of groundwater level monitoring network of Beijing Plain
下载PDF
导出
摘要 文章在北京市地下水水位监测现状基础上,分潜水和承压水对北京平原地下水监测网的监测密度和监测频率进行了优化设计。主要采用编制地下水动态类型图的方法进行了地下水水位监测网的优化,克里金插值法能定量评价依据监测网观测值绘制的地下水水位等高线的精度,因而可以用来评价监测优化结果。并根据时间序列分析和统计检验提供的定量标准优化了地下水水位监测频率。优化后,北京平原共有监测孔400眼,其中利用原有监测孔300眼,新设计监测孔100眼,手工监测频率由原来的每月6次优化为每月1次,专项高频率监测可以由地下水自动监测仪实现。文中还对地下水自动监测仪(DIVER)的监测结果和手工监测结果进行了对比评价,提出了地下水水位监测网的维护、管理措施和信息发布方式。 The present groundwater level monitoring network of Beijing Plain is not able to monitor regional groundwater regime. The monitoring network density and sampling frequency of the top unconfined and deep confined aquifers in Beijing Plain were optimized respectively in this paper. The groundwater regime zone map was created and used as the basis for locating new observation wells. The effectiveness of the newly designed network density was assessed using Kriging interpolation error standard deviation as the criteria. In addition, the sampling frequency of monitoring groundwater level was optimized by using time series analysis and statistical test. As a result, around 400 monitoring wells are necessary to monitor regional groundwater regime in Beijing Plain: 300 are existing monitoring wells and 100 are newly designed monitoring wells. The monthly sampling frequency was found sufficient to monitor long-term trend and annual periodic changes. Smaller scale variations can be captured by the installed automatic groundwater monitoring data loggers. The comparison of manual observations and data loggers confirmed the reliability and accuracy of the automatic data loggers. The monitored data is stored in GIS information system and will be regularly analyzed to provide important information to water managers, water users and publics.
出处 《水文地质工程地质》 CAS CSCD 北大核心 2007年第1期10-19,共10页 Hydrogeology & Engineering Geology
基金 中荷合作项目"中国地下水信息中心能力建设"
关键词 地下水水位 监测密度 观测频率 自动监测 groundwater level network density sampling frequency automatic monitoring
  • 相关文献

参考文献6

  • 1谢振华.首都地区地下水资源和环境调查评价[R].北京市地质调查研究院,2003..
  • 2冯一平,曹型荣,谢振华,等.北京市用水调研报告[R].1998.
  • 3北京市地质环境监测总站.北京地下水情简报[R].1990—2005.
  • 4北京市水文地质工程地质大队.北京市水文地质图集[M].上海:上海中华印刷厂,1980.
  • 5周仰效,李文鹏.区域地下水位监测网优化设计方法[J].水文地质工程地质,2007,34(1):1-9. 被引量:67
  • 6ZHOU Yangxiao, TING Cheh-Shyh, LIU Chen-wuing. Design of Groundwater Monitoring Networks with Case study of Pingtung Plain[ M]. Taiwan : WU-NAN BOOK INC,2003.

二级参考文献26

  • 1Zhou Y. Groundwater regime zoning as a tool to design regional groundwater level monitoring networks[ C ]// Proceedings of the 34th conference of International Association of Hydrogeologists. Beijing, 2006.
  • 2ESRI. AreGIS version 9.0[M/OL]. 2005. http://www. esri. com.
  • 3Zondy Cyber. MapGIS 7.0[M/OL]. 2005. http://www. mapgis. com. cn.
  • 4Matheron G. The intrinsic random functions and their applications[J]. Adv. Appli. Prob., 1973, 5: 439-468.
  • 5Van Bracht M J, E Romijn. Redesign of groundwater level monitoring networks by application of Kalman filter andKriging methods[ C]//Procedings of the Symposium of theStochastic Approach to Subsurface Flow. Montvillar-genne, France, 1985.
  • 6Bogardi I, A Bardossy , L Duckstein. Multicriterion network design using geostatistics[J]. Water Resour. Res.,1985, 21 : 199 - 208.
  • 7McBratney A B, R Webster , T M Burgess. The design ofoptimal sampling schemes for local estimation and mapping of regionalized vafiables-I[J]. Computers and Geo.sciences, 1981, 7(4) :331 - 334.
  • 8Rouhani S. Variance reduction analysis[J]. Water Resour. Res. ,1985, 21(6) : 837 - 846.
  • 9Konikow L, Kendy E. Groundwater depletion: a global problem [ J ]. Hydrogeology Journal, 2005, 13 : 317 - 320.
  • 10McGuire V L, M R Jonson, R L Schieffer, et al. Water in storage and approaches to groundwater management, High Plains aquifers, 2000 [ R ]. US Geological Survey Circ 1243, 2003.

共引文献70

同被引文献341

引证文献44

二级引证文献260

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部