期刊文献+

激光加工多孔端面机械密封中空化边界条件的比较 被引量:20

Comparison of Cavitation Boundary Conditions in Analyses of a Laser Surface Textured Mechanical Seal
下载PDF
导出
摘要 建立了激光加工多孔端面机械密封(LST-MS)的动压分析理论模型,在Half-Sommerfeld、Reynolds和JFO等3种不同空化边界条件下应用有限元法求解了端面流体膜压的Reynolds控制方程,研究了微孔结构参数及操作条件对端面无量纲平均动压的影响规律,并对上述空化算法的计算速度和精度进行了比较。结果表明,在一般情况下,采用Reynolds和JFO空化边界条件具有十分接近的预测精度,但是前者的预测速度明显优于后者,而采用Half-Sommerfeld空化边界条件预测精度则很差,建议此时采用Reynolds空化边界条件;对于不能采用Reynolds空化边界条件的情况,则建议采用JFO空化边界条件进行预测分析。 A theoretical analysis model of film hydrodynamic pressure between the two faces was developed for a laser surface textured mechanical seal (LST-MS). Finite element method was used to solve Reynolds equation respectively under the different cavitation boundary conditions of Half-Sommerfeld, Reynolds and Floberg or JFO. The effects of micro-pore geometrical parameters and operating conditions on dimensionless average dynamic pressure between the two faces under the different cavitation boundary conditions were studied. The results show that the prediction accuracies are nearly the same when the boundary conditions of Reynolds and JFO are used, but the former predicts more faster than the latter. The prediction error is very large when Half-Sommerfeld boundary condition is used. So it is suggested that the Reynolds cavitation boundary condition is generally used for numerically solving Reynolds equation controlling the film pressure of a LST-MS, otherwise the JFO boundary condition is used when the effects of face temperature and/or phase states of the fluid film between the two faces are considered.
出处 《润滑与密封》 CAS CSCD 北大核心 2007年第2期47-50,53,共5页 Lubrication Engineering
基金 国家自然科学基金资助项目(50575152) 教育部科学技术研究重点基金资助项目(03107) 宁波市科技项目(2006B100030)
关键词 机械密封 多孔端面 空化边界条件 有限元法 mechanical seal micro-pete face cavitation boundary condition finite element method
  • 相关文献

参考文献11

二级参考文献18

  • 1[1]Olsson K O, Cavitation in Dynamically Loaded Bearing, Chalmers University of Technology,Goteborg,1965.
  • 2[2]Heshmat Hooshang, The Mechanism of Cavitation in Hydrodynamic Lub rication, STLE Trans. Tribology,1991,34(2):177~186.
  • 3[3]Jakobsson B and Floberg L, The Finite Journal Bearing Cons id ering Vaporization, Chalmers Tekniska Hoegskolas Handlingar ,1957,190:1~116.
  • 4[4]Brewe D E, Theoretical Modeling of The Vapor Cavitation in Dynamically Loaded Journal Bearings, ASME Trans. J. of Trib. , 1986,108:628~638.
  • 5[5]Pan C H T, Dynamic Analysis of Rupture in Thin Fluid Films . 1-A Noni nertial Theory, ASME Journal of Lubrication of Technology ,1983,105: 96~104.
  • 6[6]Elrod H G, and Adams M L, ‘A Computer Program for Cavita tion and Starvat ion Problems', Cavitation and Related Phenomena in Lubrication, Mechanical Engin eering Publications, New York,1974,37~41.
  • 7[7]Elrod H G, A Cavitation Algorithm, ASME Trans. J. of Lubri. Tech.,1981,103(3):350~354.
  • 8[9]Dowson D and Taylor C M, Cavitation in Bearings, Annual Rev iews of Fluid Mechanics,1979,11:35~66.
  • 9张直明,滑动轴承的流体动力润滑理论,1982年
  • 10Etsion Ⅰ, Halperin G, Greanberg Y. Increasing mechanical seals life with laser-textured seal faces[A]. Proceeding of 15th International Conference on Fluid Seal[C]. London: Professional Engineering Publishing Limited, 1997.3-10.

共引文献109

同被引文献183

引证文献20

二级引证文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部