期刊文献+

构造高阶精度基本不振荡格式的理论证明 被引量:3

A THEORETICAL PROOF FOR THE CONSTRUCTION OF HIGH ORDER ESSENTIALLY NON- OSILLATORY SCHEMES
下载PDF
导出
摘要 本文研讨了Harten等人提出的高阶精度基本不振荡格式ENO[1,2],给出一种构造一致三次分段插值多项式函数R(X,W),叫以及四阶ENO格式的方法,并在理论上证明了如此构造的格式是基本不振荡的一致三阶守恒型格式。 ENO schemes by Harten[1,2] are studied in this paper. A method which constrUCt a uniformly three-order piecewise polynomial function R(x; w) of x as four-order interpolant polynomial funCtion and four-order ENO schemes are given. The schemes is proved theoretically uniformly three -order accurate essentially non -oscillatory one in conservation form.
机构地区 哈尔滨师范大学
出处 《哈尔滨师范大学自然科学学报》 1996年第3期7-14,共8页 Natural Science Journal of Harbin Normal University
关键词 ENO格式 分段光滑函数 双曲型方程 ENO schemes Piecewise smooth function Lipschitz continuous Cell- average
  • 相关文献

参考文献1

共引文献2

同被引文献13

  • 1么焕民.一种构造五阶ENO格式的途径[J].广西工学院学报,1996,7(4):18-20. 被引量:1
  • 2魏文礼,郭永涛,王纪森.一维溃坝洪水波的高精度数值模拟[J].计算力学学报,2007,24(3):362-364. 被引量:13
  • 3Harten A.High resolution schemes for hyperbolic conserva- tion laws[J].J Comput Phys, 1983,49:357-393.
  • 4Harten A.Preliminary results on the extension of ENO schemes to two-dimensional problem[J].Lecture Notes in Mathematics,1987,1270:23-40.
  • 5Harten A, Engquist B, Osher S.Uniformly high order accu- rate essentially non-oscillatory schemes[J].Joumat of Compu- tational Physics, 1987,24 : 279-309.
  • 6Shu Chi-Wang, Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].Journal of Com- putational Physics, 1989,77( 1 ) :439-471.
  • 7Kozakevicius A J, Santos L C C.ENO adaptive method for solving one-dimensional conservation laws[J].Applied Numeri- cal Mathematics, 2009,59 : 2337-2355.
  • 8Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock capturing schemes[J].J Comp Phy, 1988, 77(2) :439-471.
  • 9王永健,赵宁,王东红,王春武,毛君峰.一类Lagrange坐标系下的ENO有限体积格式[J].数值计算与计算机应用,2007,28(4):250-259. 被引量:2
  • 10由同顺.对流扩散方程的三层ENO-MMOCAA差分方法[J].应用数学,2009,22(1):137-143. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部