期刊文献+

黑河流域中上游地区降水中氢氧同位素与温度关系研究 被引量:22

Relation between oxygen and hydrogen isotopes in precipitation and temperature in Heihe river basin,China
下载PDF
导出
摘要 根据黑河流域中上游地区所取得的降水水样和降水气象资料,分析了该区域降水中氢氧同位素随温度的变化特征,研究了内陆河黑河流域中上游地区降水中氢氧同位素与温度的关系,揭示了降水中氢氧同位素随温度的变化规律。降水中氢氧同位素与温度有很好的正相关关系,且与降雨前后平均气温之间的相关性优于与降雨前和降雨后气温之间的,温度与δ^(18)O之间的相关性优于与δD的。在黑河流域,局地性降水的增加影响降水中氢氧同位素与温度之间的关系,在山前或山前盆地,因局地性降水增加,所以降水中氢氧同位素与温度的关系与山区相比较差。 Heihe River Basin, as one of the greatest inland rivers in China, was confronted with water resource scarceness due to unreasonable development and utilization. To utilize effectively the limited water resource, isotope techniques was widely used to research hydrologic cycle, first of all, characteristics of isotope in precipitation must be known. The relationship between oxygen and hydrogen isotopes in precipitation and temperature is discussed based on the study at some precipitation sampling sites in the middle basin and mountain areas of Heihe river basin. The positive correlation between δ^18O, δD and temperature was found and the better linear relation between temperature and δ^18O in precipitation reveals that δ^18O is a more reliable indicator of temperature than δD. The relationship between δ^18O in precipitation and average temperature is better than that between δ^18O and the temperature before or after precipitation. There is a better linear relation between δ^18O in precipitation and temperature at mountain areas with little local water atmosphere sources.
出处 《干旱区地理》 CSCD 北大核心 2007年第1期16-21,共6页 Arid Land Geography
基金 国家自然科学基金(40572141) 国家科技基础条件平台项目(2004DEA70890)
关键词 黑河 降水 同位素 Heihe river basin, precipitation, isotope
  • 相关文献

参考文献20

  • 1Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964,16(4) :436 -468.
  • 2Sonntag C, Mtlnnich K O, Jacob H, Rozanski K. Variations of deuterium and oxygen-18 in continental precipitation and groundwater, and their causes[A]. In: Street-Perrott A,et al. ed. Variations in the global water budget [ C ]. Dordrecht/Holland: D. Reidel Publ. Comp. , 193,107 -124.
  • 3姚檀栋.青藏高原中部普若岗日冰原的发现及其科学意义[J].冰川冻土,2000,22(1):1-2. 被引量:18
  • 4IAEA, 1969, 1970, 1971, 1973, 1975, 1979, 1983, 1986,1990, 1992. Environmental Isotope Data. World survey of isotope concentrations in precipitation [ C ]. Technical Report Series No.69, 117, 129, 147, 165, 192, 226, 264, 311, 331. Vienna:International Atomic Energy Agency.
  • 5Rozanski K. Deuterium and oxygen-18 in European groundwaters- Links to atmospheric circulation in the past[J]. Chemical Geology ( Isotope Geoscience Section), 1985, 52,349 - 363.
  • 6Rozanski K, Sonntag C, Münnich K O. Factors controlling stable isotope composition of European precipitation. Tellus 34B, 1982,142 - 150.
  • 7Yurtsever Y, Gat J R. Atmospheric waters [ A ]. In : Gat J R,Gonfiantini R, ed. Stable Isotopes in Hydeology. Deuterium and oxygen-18 in the water cycle[ C]. Vienna/Austria: IAEA - publications,1981, 103 - 142.
  • 8Charles C D, Rind D, Healy R, et al. Tropical cooling and the isotopic composition of precipitation in general circulation model simulations of the ice age climate[ J ]. Climate dynamics,2001,17:489 - 502.
  • 9Schürch M, Kozel R, Schotterer U, et al. Observation of isotopes in the water cycle - the Swiss National Network (NISOT) [ J].Environmental Geology, 2003,45 : 1 - 11.
  • 10Araguas-Araguas L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over Southeast Asia[J]. J. Geophys.Res, 1998,103 (D22) : 28721 -28742.

二级参考文献44

  • 1陈仁升,康尔泗,张济世.基于小波变换和GRNN神经网络的黑河出山径流模型[J].中国沙漠,2001,21(z1):12-16. 被引量:19
  • 2Rutledge A T. Methods of using streamflow records for estimating total and effective recharge in the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces [J]. Am. Water Resour. Assoc. Mon. Ser., 1992, 17: 59-73.
  • 3Mitchell-Bruker S M. Modeling Steady State Groundwater and Surface Water Interactions [D]. Indiana Univ., 1993. 1-94.
  • 4McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference ground-water flow model [A]. U.S. Geol. Surv. Techn. Water-Resour. Inv., Book 6, Chapt. A1 [C]. 1988.
  • 5Swain E D, Wexler E J. Coupled surface-water and groundwater flow model for simulation of stream-aquifer interaction [J]. U S Geol. Surv. Open-File Rept., 1992, 162: 92-138.
  • 6Wolf R J, Helgesen J O. Ground- and surface-water interaction between the Kansas River and associated alluvial aquifer, northeastern Kansas [J]. U S Geol. Surv. Water-Resour. Inv. Rept., 1993, 59: 92-4137.
  • 7Modica E. Hydraulic Relationships between Shallow Groundwater Subsystems Discharging to Surface Water Bodies and Underlying Regional Systems (New Jersey) [D]. New York: Univ. of New York, 1993. 1-223.
  • 8Belanger T V, Walker R B. Groundwater seepage in the Indian River Lagoon, Florida [A]. Krishna J. Proc. Internat. Symp. Tropical Hydrology and Caribbean Water Resour [C]. 1990. 367-375.
  • 9Silliman S E, Booth D F. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana [J]. J. Hydrol., 1993, 146(1-4): 131-148.
  • 10McCarthy K A, McFarland W D, Wilkinson L M, et al . The dynamic relationship between groundwater and the Columbia River using deuterium and oxgen-18 as tracers [J]. J. Hydrol., 1992, 135(1-4): 1-12.

共引文献105

同被引文献508

引证文献22

二级引证文献354

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部