摘要
基于统计学习理论中结构风险最小化原则的支持向量机是易于小样本的机器学习方法。本文使用支持向量机和二叉树的方法对肝纤维化CT图像进行分类,并与k近邻法和BP神经网络等其它算法进行比较,结果显示对于肝纤维化图像,支持向量机的分类效果和鲁棒性要高于其他两种算法。
Support vector machine ( SVM ) based on the structural risk minimization of statistical learning theory is a method of machine learning for small sample set. SVM and binary tree were used to classify the CT images of patients with hepatic fibrosis, and the result was compared with those of k-nearest neighbor algorithm and BP neural network in this paper. The comparative result shows that SVM is more effective than k-nearest neighbor and BP neural network algorithms in classification and robust.
出处
《北京生物医学工程》
2007年第1期40-43,共4页
Beijing Biomedical Engineering
基金
北京市教育委员会科技发展项目(01KJ-096)资助
关键词
肝纤维化
CT图像
支持向量机
最优分类超平面
二叉树
hepatic fibrosis
CT image
support vector machine (SVM)
optimal separating hyper plane
binary tree