期刊文献+

基于支持向量机的肝纤维化CT图像分类 被引量:2

Classification based on support vector machine for the CT image of hepatic fibrosis
下载PDF
导出
摘要 基于统计学习理论中结构风险最小化原则的支持向量机是易于小样本的机器学习方法。本文使用支持向量机和二叉树的方法对肝纤维化CT图像进行分类,并与k近邻法和BP神经网络等其它算法进行比较,结果显示对于肝纤维化图像,支持向量机的分类效果和鲁棒性要高于其他两种算法。 Support vector machine ( SVM ) based on the structural risk minimization of statistical learning theory is a method of machine learning for small sample set. SVM and binary tree were used to classify the CT images of patients with hepatic fibrosis, and the result was compared with those of k-nearest neighbor algorithm and BP neural network in this paper. The comparative result shows that SVM is more effective than k-nearest neighbor and BP neural network algorithms in classification and robust.
出处 《北京生物医学工程》 2007年第1期40-43,共4页 Beijing Biomedical Engineering
基金 北京市教育委员会科技发展项目(01KJ-096)资助
关键词 肝纤维化 CT图像 支持向量机 最优分类超平面 二叉树 hepatic fibrosis CT image support vector machine (SVM) optimal separating hyper plane binary tree
  • 相关文献

参考文献11

  • 1张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273
  • 2Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1998.
  • 3Guo G,Li S Z,Chan K L.Support vector machines for face recognition[J].Image and Vision Computing,2001,19:631 -638.
  • 4Campbell C.Kernel methods:a survey of current techniques[J].Neurocomputing,2002,48:63-84.
  • 5Jonsson K,Kitter J,Li Y P,et al.Support vector machines for face authentication[J].Image and Vision Computing,2002,20:369 -375.
  • 6Pontil M,Verri A.Support vector machines for 3-D object recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20:637-646.
  • 7Abbass H A.An evolutionary artificial neural networks approach for breast cancer diagnosis[J].Artificial Intelligence in Medicine,2002,25:265-281.
  • 8刘兴龙,周萍,李训栋,王磊,童隆正.肝纤维化CT图像的频域特征分析[J].医疗设备信息,2004,19(10):7-9. 被引量:4
  • 9童隆正,陈海荣,贺文.肝纤维化CT图像的小波变换和布朗分形模型分析[J].北京生物医学工程,2003,22(2):113-115. 被引量:9
  • 10陈海荣,童隆正,贺文.肝纤维化纹理分析方法[J].首都医科大学学报,2002,23(2):194-196. 被引量:4

二级参考文献19

  • 1孙瑛,覃家美,廖孟扬,汤瑞云,刘萍.利用图像纹理的频域特征参量对肝脏组织的分析[J].中国医学影像技术,1994,10(1):59-62. 被引量:2
  • 2Donohue K D, Huang L, Burks T, Forsberg F, et al. Tissue classification with generalized spectrum parameters[J]. Ultrasound Med Biol. 2001, Nov; 27(11): 1505- 1514.
  • 3Donohue K D, Huang L, Burks T, Forsberg F, et al.Tissue classification with generalized spectrum parameters[J].Ultrasound Med Biol.2001, Nov; 27 (11): 1505- 1514.
  • 4Sokolowska B,[J]ozwik A, Pokorski M.A fuzzy- classifier system to distinguish respiratory patterns evolving after diaphragm paralysis in the cat[J].Jpn[J] Physiol.2003, Aug; 53(4): 301- 307.
  • 5Cabello D, Barro S, Salceda[J]M, et al.Fuzzy K- nearest neighbor classifiers for ventricular arrhythmia detection[J].Int[J] Biomed Comput.1991, Feb; 27(2): 77- 93.
  • 6章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 7RafaelCG RichardEW.Digital Image Processing[M].北京:电子工业出版社· Prentice Hall,2003..
  • 8王思贤,江筱炳,廖孟扬.基于小波变换及布朗分形模型的纹理分割[J].武汉大学学报(自然科学版),1998,44(1):118-120. 被引量:8
  • 9马东,曹培杰,王浩军,程敬之.分形几何学在医学图像处理中的应用[J].第四军医大学学报,1999,20(3):256-259. 被引量:6
  • 10卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41

共引文献2286

同被引文献18

  • 1刘兴龙,周萍,李训栋,王磊,童隆正.肝纤维化CT图像的频域特征分析[J].医疗设备信息,2004,19(10):7-9. 被引量:4
  • 2徐海祥,喻莉,朱光喜,张翔,田金文.基于支持向量机的磁共振脑组织图像分割[J].中国图象图形学报,2005,10(10):1275-1280. 被引量:25
  • 3于春水,李坤成,林富春,蒋田仔,秦文.复发好转型多发性硬化表现正常脑白质DTI研究[J].放射学实践,2005,20(12):1039-1042. 被引量:4
  • 4王磊,李训栋,聂书君,于春水,童忠勇,童隆正.多发性硬化患者脑白质微观病变的纹理特征分析[J].医疗设备信息,2006,21(4):56-58. 被引量:5
  • 5邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2006:77-78.
  • 6Kutzelnigg Alexandra,Lucchinetti Claudia F, Stadelmann Christine,et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis [ J ]. Brain, 2005,128 ( 11 ) : 2705 - 2712.
  • 7Haselhorst R, Kappos L, Bilecen D, et al. Dynamic susceptibility contrast MR imaging of plaqued evelopment in multiple sclerosis: application of an extended blood brain barrier leakage correction [J]. Magn Reson Imaging,2000,11 ( 5 ) :495 - 505.
  • 8Armspach JP, Gounot D,Rumbach L, et al. In vivo determination of muhiexponential T2 relaxation in the brain of patients with multiple sclerosis[J]. Magn Reson Imaging, 1991,9 : 107 - 113.
  • 9Lublin FD, Reingold SC. Defining the Clinical Course of Multiple Sclerosis: Results of an International Survey [ J ]. Neurology, 1996,46(4) :907 -911.
  • 10Scott RS, Ungar PS , Bergstrom TS, et al. Dental microwear texture analysis: technical considerations[ J]. Journal of Human Evolution, 2006 ( 51 ) : 339 - 349.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部