期刊文献+

核模糊C均值算法的聚类有效性研究 被引量:28

On Cluster Validity for Kernelized Fuzzy C-Mean Algorithm
下载PDF
导出
摘要 针对核模糊C均值聚类(Kernelized Fuzzy C-Means,KFCM)算法的有效性评价,以核非线性映射为工具,将原空间中的六个著名有效性指标推广到高维特征空间,得到其对应的核化形式,并通过数值比较实验考察这些核化指标的性能及其对高斯核宽度β和模糊指数m的敏感特性。结果表明,在所考察的指标中,著名的Xie-Beni指标VXB及其改进指标VK的核化版本具有最好的性能和可靠性,可优先作为KFCM聚类算法的有效性准则。 For the sake of evaluating the quality of cluster results obtained by the KFCM (kernelized fuzzy c-means) algorithm, six noted validity indices for standard FCM are generalized into high-dimensional feature space for the purpose of acquiring their corresponding kernelized expressions. And then, the performances and the dependencies of these kernelized indices on Gauss kernel width β and fuzzy exponent m are examined via some tests of numerical experiments. The results show that, the kernelized versions of the Xie-Beni index VXB and its emendatory index VK are the most effective and reliable of the indices considered, so can be given the priority as the cluster validity criteria for KFCM algorithm.
出处 《计算机科学》 CSCD 北大核心 2007年第2期207-210,229,共5页 Computer Science
基金 国家自然科学基金(No.60572143) 家电子对抗技术预研基金(NEWL51435QT220401)
关键词 核聚类 核模糊C均值 聚类有效性 最佳聚类数 Kernel clustering, Fuzzy c-means, Cluster validity, Optimal number of clusters
  • 相关文献

参考文献19

  • 1张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195
  • 2伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 3Girolami M. Mercer Kernel-Based Clustering in Feature Space.IEEE Trans. Neural Networks, 2002, 13(3): 780-784
  • 4Li K, Liu Y S. KFCSA: A Novel Clustering Algorithm for High-Dimension Data. FSKD 2005, LNAI 3613, Springer-Verlag,Berlin Heidelberg, 2005. 531-536
  • 5Kim D-W, Lee K Y, Lee D, et al. Evaluation of the Performance of Clustering Algorithms in Kernel-Induced Feature Space. Pattern Recognition, 2005, 38: 607-611
  • 6Chen S C, Zhang D Q. Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-Inducecl Distance Measure. IEEE Trans. SMC PART B: CYBERNETICS, 2004,34(4): 1907-1916
  • 7Xu R, Wunseh II D C. Survey of Clustering Algorithms. IEEE Trans. Neural Networks, 2005,16(3) : 645-678
  • 8Halkidi M, Batistakis Y, Vazirgiannis M. Cluster Validity Methods: Part I. Available at: http://citeseer, ist. psu. edu/534869.html
  • 9Bezdek J C. Numerical Taxonomy with Fuzzy Sets. J. Math. Biol., 1974, 1: 57-71
  • 10Bezdek J C. Cluster Validity with Fuzzy Sets. J. of Cybernetics,1974, 3:58-72

二级参考文献12

  • 1Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 2Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 3Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 4Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 5Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 7Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 8Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.
  • 9Chernoff D F. The Use of Faces to Represent Points in k-dimensional Space Graphically[J]. Journal of American Statistic Association, 1999, 58(342): 361-368.
  • 10高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报,1999,44(21):2241-2251. 被引量:100

共引文献240

同被引文献251

引证文献28

二级引证文献293

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部