期刊文献+

基于充分挖掘增量事务的关联规则更新算法 被引量:3

Updating Algorithm for Association Rules Based on Fully Mining Incremental Transactions
下载PDF
导出
摘要 目前已提出了许多快速的关联规则增量更新挖掘算法,但是它们在处理对新增事务敏感的问题时,往往会丢失一些重要规则。为此,文章提出了一种新的挖掘增量更新后的数据库中频繁项集的算法EUFIA(Entirety Update Frequent Itemsets Algorithm),该算法先对新增事务数据分区,然后快速扫描各分区,能全面有效地挖掘出其中的频繁项集,且不丢失重要规则。同时,最多只扫描1次原数据库也能获得更新后事务数据库的全局频繁项集。研究表明,该算法具有很好的可测量性。 Incremental Association rules Mining is an important content of data mining technology. This study proposes a new algorithm, called the Entirety Update Frequent Itemsets Algorithm (EUFIA) for efficiently incrementally mining association rules from large transaction database. Rather than rescanning the original database for some new generated frequent itemsets, EUFIA partitions the incremental database logically according to unit time interval, then accumulates the occurrence counts of new generated frequent itemsets and deletes infrequent itemsets obviously by backward method. Thus, EUFIA can discover newly generated frequent itemsets more efficiently and need rescan the original database only once to get overall frequent itemsets in the final database if necessary. EUFIA has good scalability in our simulation.
出处 《计算机科学》 CSCD 北大核心 2007年第2期220-222,233,共4页 Computer Science
基金 国家自然科学基金项目(50474033) 福建省自然科学基金项目(A0310008) 福建省高新技术研究开放计划重点项目(2003H043)
关键词 关联规则 增量式更新 强频繁项集 次频繁项集 弱频繁项集 Association rules, Incremental updating, Powerful frequent itemsets, Inferior frequent itemsets, Weak frequent itemsets
  • 相关文献

参考文献15

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In; Proceedings of ACM SIGMOD International Conference on Management of Date,Washington D C, 1993. 207-216
  • 2Agrawal R, Srikant R. Fast algorithm for mining association rules, In: Proceedings of the 20th International Conference on VLDB,Santiago,Chile, 1994. 487-499
  • 3Han J ,Kamber M. Data Mining: Concepts and Techniques. Beijing : Higher Education Press, 2001
  • 4Han J,Jian P, et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data,Dallas,TX,May 2000. 1-12
  • 5Shoemaker C, Ruiz C. Association Rule Mining Algorithms for Set-valued Data. In:Proc. 4th Intl. Conf. on Intelligent Data Engineering and Automated Learning. LNCS Vol. 2690, Hong Kong, china, 2003. 669-676
  • 6Wang Jianyong, Han J, Lu Y, Tzvetkov P. TFP:an efficient algorithm for mining top-k frequent closed itemsets. Knowledge and Data Engineering, IEEE Transactions, 2005,17(5) : 652-663
  • 7颜跃进,李舟军,陈火旺.频繁项集挖掘算法[J].计算机科学,2004,31(3):112-114. 被引量:20
  • 8Cheung D W, et al, Maintenance of discovered association rules in large databases: an incremental updating technique, In; Proceedings of the 12th International Conference on Data Engineering, New Orleans, Louisana, 1996. 106-114
  • 9Cheung DW, LEE SD, Kao B. A general incremental technique for maintaining discovered association rules. In: Topor RW, Tanaka K,eds. Proc. of the 5th Int'l Conf. on Database Systems for Advanced Applications. World Scientific, 1997. 185-194
  • 10Hong T P, Wang C Y, Tao Y H. A new incremental data mining algorithm using pre-large itemsets. Intelligent Data Analysis,2001,5(2): 111-129

二级参考文献36

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Date, Washington DC, 1993.207~216
  • 2[2]Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, 1994. 487~499
  • 3[3]Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001
  • 4[5]Agrawal R, Shafer J C. Parallel mining of association rules:Design, implementation, and experience. IBM Research Report RJ 10004,1996
  • 5[6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proceedings of the 21th International Conference on VLDB, Zurich, Switzerland, 1995. 432~444
  • 6[7]Hah J, Jian P et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000.1~12
  • 7[8]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of databases systems for advanced applications, Melbourne, Australia, 1997. 185~194
  • 8[10]Han J, Jian P. Mining access patterns efficiently from web logs. In: Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'00), Kyoto, Japan,2000. 396~407
  • 9[11]Agrawal R, Srikant R. Mining sequential pattern. In: Proceedings of the 11th International Conference on Data Engineering, Taipei, 1995. 3~14
  • 10Liu J Q,Pan Y H,Wang K,Han J W. Mining Frequent Item Sets by Opportunistic Projection, KDD'02, Edmonton, Canada, July 2002

共引文献97

同被引文献34

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部