期刊文献+

主曲线算法初始值选取的分析

Analysis of Choosing the Initial Value of Principal Curve Algorithm
下载PDF
导出
摘要 主曲线是一种用于数据压缩和特征提取的有效方法,是对主成分分析的非线性推广。由于主曲线与主成分的密切联系,主曲线生成算法通常以第一主成分线做初始值。然而实验发现第一主成分未必是算法初始化的最佳选择。本文将以HS算法和多边形算法为例,就初始值的选取对生成主曲线的影响做出分析并通过实验得出结论:HS算法以原点作初值效果较好,多边形算法应根据数据点集的不同结构选择合适的初值。 Principal Curves are very useful approaches of feature extraction and data compression, they are nonlinear generalizations of the first linear principal component which can be thought of as 'optimal' linear 1-d summarization of the data. Up to now several algorithms for constructing principal curves have been proposed. They are all initialized by the first principal component for the close relation between principal curves and the principal components. Taking example for the HS and the polygonal line algorithms, this paper analyzes how the initial line affects the principal curves. We conclude the first principal component line is not always the best choice of the initialization step. The experiments show the HS algorithm will produce perfect results if it starts with the origin,and the polygonal line algorithm should choose proper initial value according to different global structure of the data. It proves that local optimization can not always lead to global optimization.
作者 王真 曹立明
出处 《计算机科学》 CSCD 北大核心 2007年第2期227-229,共3页 Computer Science
关键词 主曲线 主成分 初始值 投影指标 Principal curves, Principal component, Initial value, Projection indices
  • 相关文献

参考文献1

二级参考文献35

  • 1Tikhonov A N, Arsenin V Y. Solution of Ill-Posed Problems. New York: Wiley, 1977
  • 2Hastie T. Principal curves and surfaces. Laboratory for Computational Statistics, Stanford University, Department of Statistics: Technical Report 11, 1984
  • 3Verbeek J J, Vlassis N, Krse B. A k-segments algorithm for finding Principal Curves. Computer Science of Institute, University of Amsterdam:Technical Report IAS-UVA-00-11,2000
  • 4Sandilya S, Kulkarni S R. Principal curves with bounded turn. IEEE Transactions on Information Theory, 2002,48(10):2789~2793
  • 5Smola A J. Learning with kernel[Ph D dissertation]. University Berlin, 1998
  • 6Rissanen J. Stochastic complexity and modeling. The Annals of Statistics, 1986,14(3):1080~1100
  • 7Kass R E, Raftery A E. Bayes factors. Journal of the American Statistical Association, 1995,90(430):773~795
  • 8Stanford D, Raftery A E. Principal curve clustering with noise. Department of Statistics, University of Washington:Technical Report 317, 1997
  • 9Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via EM algorithm. Journal of the Royal Statistical Society(Series B), 1977,39(1):1~38
  • 10Hastie T, Stuetzle W. Principal curves. Journal of the American Statistical Association, 1988, 84(406): 502~516

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部