期刊文献+

叶轮机械气动优化设计中的近似模型方法及其应用 被引量:45

Aerodynamic Optimization Design of Turbomachinery with Approximation Model Method
下载PDF
导出
摘要 针对在工程中完全采用随机类优化方法寻优时计算量过大的问题,应用统计学的方法发展了计算量小、在一定程度上可以保证设计准确性的近似模型方法.在气动优化设计过程中,用该模型取代耗时的高精度的计算流体动力学分析,可以加速设计过程,降低设计成本.基于统计学理论提出的近似模型方法有效地平衡了基于计算流体动力学分析的叶轮机械气动优化设计中计算成本和计算精度这一对矛盾,在离心压气机叶片扩压器、叶轮和混流泵叶轮设计等问题中得到了成功应用,展示了广阔的工程应用前景.目前,已经建立了离心压气机部件及水泵叶轮的优化设计系统,并在工程设计中发挥了重要作用. To reduce huge computation of the traditional stochastic optimization methods for engineering optimization, approximation model methods with acceptable accuracy for engineering design are developed based on the statistical theory. Especially, the approximation model methods can be applied to the aerodynamic optimization design instead of the time-consuming computational fluid dynamics (CFD) analysis to shorten the design process and reduce the computational cost. In the aerodynamic optimization design of turbomachine, the approximation model methods enable to balance the computational cost and accuracy, whose successful applications in centrifugal compressor impeller, diffuser, and mixed-flow pump impeller designs are introduced to show a wide engineering foreground. An optimization design system has been constructed and practically used for centrifugal compressor components and mixed-flow pump impeller.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第2期125-135,184,共12页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金重点资助项目(50136030)
关键词 近似模型 叶轮机械 气动优化 approximation model turbomachine aerodynamic optimization design
  • 相关文献

参考文献21

  • 1Shahpar S.A comparative study of optimization methods for aerodynamic design of turbomachinery blades[C/CD]∥Proceedings of ASME TURBO EXPO 2000:Turbomachinery.New York:ASME,2000:2000-GT-523.
  • 2Rumelhart D E,Widrow B,Lehr M A.The basic ideas in neural networks[J].Communications of the ACM,1994,37(3):87-92.
  • 3Simpson T W,Peplinski J D,Koch P N,et al.Metamodels for computer-based engineering design:survey and recommendations[J].Engineering with Computers,2001(17):129-150.
  • 4Shyy W,Tucker P K,Vaidyanathan R.Response surface and neural network techniques for rocket engine injector optimization[J].Journal of Propulsion and Power,2001,17(2):391-401.
  • 5Madsen J I,Shyy W,Haftka R T.Response surface techniques for diffuser shape optimization[J].AIAA Journal,2000,38(9):1512-1518.
  • 6Papila N,Shyy W,Haftka R.Assessment of neural net and polynomial-based techniques for aerodynamic applications[C/CD]∥Proceedings of AIAA 17th Applied Aerodynamics Conference.Reston,USA:AIAA,1999:AIAA 99-3167.
  • 7Vaidyanathan R,xPapila N,Shyy W.Neural network and response surface methodology for rocket engine component optimization[C/CD]∥Proceedings of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization.Reston,USA:AIAA,2000:AIAA 2000-4880.
  • 8Papila N,Shyy W,Griffin L.Shape optimization of supersonic turbines using global approximation methods[J].Journal of Propulsion and Power,2001,18(3):509-518.
  • 9Madavan N K,Rai M M,Huber F W.Redesigning gas-generator turbines for improved unsteady aerodynamic performance using neural networks[J].Journal of Propulsion and Power,2001,17(3):669-677.
  • 10Pierret S.Turbomachinery blade design using a Navier-Stokessolver and artificial neural network[J].ASME Journal of Turbomachinery,1999,121(2):326-332.

二级参考文献30

  • 1卢金铃,席光,祁大同,邱凯.离心泵三元扭曲叶片设计的研究[J].工程热物理学报,2002,23(S1):61-64. 被引量:14
  • 2席光,王晓锋,蒋三红,贾会霞,王尚锦.基于三维粘性流动分析的离心压缩机叶轮设计方法[J].工程热物理学报,2002,23(S1):54-57. 被引量:10
  • 3[1]Shyy W, Tucker P K, Vaidyanathan R. Response Surface and Neural Network Techniques for Rocket Engine Injector Optimization. In: AIAA/SAE/ASME/ASEE 35th Joint Propulsion Conference. 1999. Paper No.99-2455
  • 4[2]Papila N, Shyy W, Haftka R, et al. Assessment of Neural Net and Polynomial-Based Techniques for Aerodynamic Applications. In: AIAA 17th Applied Aerodynamics Conference. Norfolk, VA, 1999. Paper No. 99-3167
  • 5[3]Vaidyanathan R, Papila N, Shyy W, et al. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization. In: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. 2000. Paper No.2000-4880, Long Beach, CA
  • 6[4]Papila N, Shyy W, Griffin L, et al. Preliminary Design Optimization for a Supersonic Turbine for Rocket Propulsion. In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000. Paper No.2000-3242, Huntsville, AL
  • 7[5]Madsen J I, Shyy W, Haftka R T. Response Surface Techniques for Diffuser Shape Optimization. AIAA Journal,2000, 38(9): 1512-1518
  • 8[6]Papila N, Shyy W, Griffin L, et al. Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods. In: AIAA 39th Aerospace Sciences Meeting & Exhibit. 2001. Paper No.2001-1065
  • 9[7]Nateri K Madavan, Man Mohan Rai, Frank W Huber. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance. NASA/TM-1998-208754
  • 10[8]S Pierret, R A Van den Braembussche. Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network. ASME Journal of Turbomachinery,1999, 121:326-332

共引文献99

同被引文献455

引证文献45

二级引证文献224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部