期刊文献+

基于多导脑电特征的生理性精神疲劳分析 被引量:5

Physiological Mental Fatigue Analysis Based on Multichannel Electroencephalogram Features
下载PDF
导出
摘要 通过对4种生理性精神疲劳状态下4导脑电信号进行功率谱和小波熵特征分析,研究了脑电信号各节律相对功率以及小波熵与生理性精神疲劳程度之间的关系,并分析了它们在不同生理性精神疲劳状态下的变化规律及其相关性.实验分析结果表明,脑电信号各节律的相对功率以及小波熵平均值与生理性精神疲劳程度之间存在很强的关联性,对于不同的生理性精神疲劳状态,随着生理性精神疲劳程度的增加,其脑电信号的小波熵平均值逐渐降低,θ、α和β节律高频快波相对功率的平均值逐渐降低,而δ节律高幅度慢波相对功率平均值逐渐增加.脑电信号各节律的相对功率以及小波熵平均值有望成为衡量生理性精神疲劳程度的指标. Investigating the effects on physiological mental fatigue with continuous studying and short rest, the relationships between relative power in different rhythms of electroencephalogram (EEG) and physiological mental fatigue, and between wavelet entropy of EEG and physiological mental fatigue are explored by analyzing power spectrum and wavelet entropy features of four channels' EEG in four mental fatigue states, and the variations of relative power and wavelet entropy of EEG at different physiological mental fatigue levels are sought out. The experimental results show that physiological mental fatigue level increases with the increase of the studying time and intensity, and short rest can relieve the physiological mental fatigue level. The relative power and wavelet entropy of EEG are strongly correlated with the physiological mental fatigue level. The average relative power in θ, α and βrhythms and the wavelet entropy of EEG decrease, while the average relative power in δ rhythm of EEG increases with the increasing physiological mental fatigue level. The average relative power in different rhythms and the wavelet entropy of EEG are expected to serve as the index for detecting physiological mental fatigue level.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第2期250-254,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(30670534)
关键词 生理性精神疲劳 脑电 小波熵 功率谱 physiological mental fatigue electroencephalogram wavelet entropy power spectrum
  • 相关文献

参考文献7

  • 1Jansen B H,Brandt M E.Nonlinear dynamical analysis of the EEG[M].Singapore:World Scientific,1993.
  • 2Tong S,Bezerianos A,Paul J,et al.Nonextensive entropy measure of EEG following brain injury from cardiac arrest source[J].Physica A:Statistical Mechanics and Its Applications,2002,305(3/4):619-628.
  • 3Rosso O A,Blanco S,Yordanova J,et al.Wavelet entropy:a new tool for analysis of short duration brain electrical signals[J].J Neurosci Meth,2001,105(1):65-75.
  • 4Al-Nashash H A,Thakor N V.Synthesized quantitative assessment of human mental fatigues with EEG and HRV[J].IEEE Transactions on Biomedical Engineering,2005,52(12):2119-2122.
  • 5封洲燕.应用小波熵分析大鼠脑电信号的动态变化特性[J].生物物理学报,2002,18(3):325-330. 被引量:31
  • 6Newman J,Grace A A.Binding across time:the selective gating of frontal and hippocampal systems modulating working memory and attention status[J].Consciousness and Cognition,1999,8(2):196-212.
  • 7Belger A,Puce A,Krystal J H,et al.Dissociation of mnemonic and perceptual processes spatial and nonspatial working memory using fMRI[J].Hum Brain Mapp,1998,6(1):14-32.

二级参考文献17

  • 1[1]Rezek IA, Roberts SJ. Stochastic Complexity Measures for Physiological Signal Analysis[J]. IEEE Trans Biomed Engin, 1998,45(9): 1186-1191.
  • 2[2]Lee YJ, Zhu YS, Xu YH, et al. Detection of non-linearity in the EEG of schizophrenic patients[J]. Clin Neurophysiol, 2001,112(7): 1288-1294.
  • 3[3]Krystal AD, Zaidman C, Greenside HS, et al. The largest Lyapunov exponent of the EEG during ECT seizures as a measure of ECT seizure adequacy[J]. Electroencepholography and Clinical Neurophysiology, 1997,103(6):599-606.
  • 4[4]Shaw FZ, Chen RF, Tsao HW, et al. Algorithmic complexity as an index of cortical function in awake and pentobarbital-anesthetized rats[J]. J Neurosci Meth, 1999,93(2): 101-110.
  • 5[5]Pincus S. Approximate entropy (ApEn) as a complexity measure[J]. Chaos, 1995,5(1):110.
  • 6[6]Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify?[J] American Journal of Physiology, 1994,266(4 Pt 2):H1643.
  • 7[7]Inouye T, Shinosaki K, Sakamoto H, et al. Quantification of EEG irregularity by use of the entropy of the power spectrum[J]. Electroencephalography and Clinical Neurophysiology, 1991,79(3):204-210.
  • 8[8]Muthuswamy J, Thakor NV. Spectral analysis methods for neurological signals[J]. J Neurosci Meth, 1998,83(1):1-14.
  • 9[9]Unser M, Aldroubi A. A review of wavelet in biomedical applications[J]. Proc IEEE, 1996,84:626-638.
  • 10[10]Mallat SG. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989,11:674-693.

共引文献30

同被引文献39

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部