期刊文献+

三点爆轰机理与EFP尾翼成型研究(英文) 被引量:5

Investigation of Three-point Detonation Mechanism and Formation of Tails of EFP
下载PDF
导出
摘要 采用爆轰波理论分析了由爆炸成形弹丸装药而成的三点起爆爆轰波的相互作用。运用LS-DYNA软件数值模拟了三点起爆方式下的爆轰波作用、超压形成、药型罩在非均衡爆轰作用下的变形过程,以及尾翼的形成机理等。研究结果显示:药型罩表面受到非均衡爆轰载荷作用,发生翻转、变形,在有超压作用的药型罩区域的压合程度小,形成弹丸尾翼,其中起爆半径对弹丸长径比、头尾速度、动能以及尾翼成形有重要影响。模拟中,起爆半径应选在20-30mm之间。实验结果对理论分析和数值模拟研究进行了验证。 The detonation wave theory was applied to analyze the interacting process of detonation waves after the shaped charge was initiated with three initiation points. And the forming process and mechanism of the hyper pressure on the symmetrical plane were obtained. The energy sources forming the EFP tails were found. The software of LS-DYNA was simulated the impacting process of detonation waves, the formation of hyper-pressure, and the deforming process of the liner. Results of simulations show the liner overturns and deforms under the action of the nonuniform loads of explosive and three pressure marks on the surface of liner are forged by hyper pressure. The displacement-time curves indicate the formation of the EFP tails is attributed to the different displacements of elements of the liner under the action of the nonuniform loads. The initiation radius has great effect on the slenderness ratio, speed, kinetic energy and shape of tails of the EFP. The appropriate initiation radius was primarily fixed on 20 mm to 30 mm. The experimental result shows a good agreement with results of theoretical analysis and numerical simulations.
出处 《含能材料》 EI CAS CSCD 2007年第1期23-28,共6页 Chinese Journal of Energetic Materials
基金 Project Supported:the Premade Study Item of National Defense(413260401)
关键词 爆炸力学 爆炸成形弹丸 三点起爆 数值模拟 起爆半径 explosion mechanics explosively formed projectile three-point initiation numerical simulation radius of initiation
  • 相关文献

参考文献10

  • 1PENG Qing-ming.Discussion of devising methods of EFP warheads[A].4th Symposium on Shaped Charge[C],Shanxi:Arms Institute of China Press,1984:41-50 (in Chinese).
  • 2Joseph C,David E B,Richard Fong.A unique method of providing explosively formed penetrators with fins[A].17th International Symposium on Ballistics[C],Midrand,South Africa.The South African Ballistic Organization,1998:55-62.
  • 3William N,Bernard R,Eric V.Explosively formed projectiles with canted fins[A].19th International Symposium on Ballistics[C],Inerlaken,Switzerland,2001:755-762.
  • 4Berner C,Fleck V.Pleat and asymmetry effects on the aerodynamics of explosively formed penetrators[A].18th International Symposium on Ballistics[C],San Antonio,TX Institute for Advanced Technology,the University of Texas an Austin Southwest Research Institute,1999:11-19.
  • 5Mahon J M,Church P.Use of hydrocode simulations in the design of tantalum EFPs[A].18th International Symposium on Ballistics[C],San Antonio,TX Institute for Advanced Technology,the University of Texas an Austin Southwest Research Institute,1999:520-527.
  • 6Berner C,Fleck V,Warkedn D.Aerodynamic predictions of optimized explosively formed penetrators[A].17th International Symposium on Ballistics[C],Midrand,South Africa.The South African Ballistic Organization,1998:108-116.
  • 7CAO bing.Investigation of forming mechanism and pivotal technology of the EFP[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2001:43-44 (in Chinese).
  • 8于川,董庆东,孙承纬,仝延锦,晏成立,李发伯,桂毓林,谢盘海,李斌,杨晋晏.带尾翼翻转型爆炸成形弹丸试验研究[J].爆炸与冲击,2003,23(6):561-564. 被引量:21
  • 9Beijing Institute of Technology.Explosion and Action[M].Beijing:Defence Industry Press,1979:182-190 (in Chinese).
  • 10Livermore.LS-DYNA Keyword User's Manual[M].California:Livermore Software Technology Corporation,2001:610-1026.

二级参考文献9

  • 1[1]Weimann K, Doeringsfeld K, Speck J, et al. Modeling, testing, and analysis of EFP performance as a function of confinement [A]. 12th International Symposium on Ballistics [C]. San Antonio, 1990:228-237.
  • 2[2]Weimann K. Flight stability of EFP with star shaped tail [A]. 14th International Symposium on Ballistics [C]. Queber, Canada, 1993:755-763.
  • 3[3]Weimann K. Performance of tantalum, copper, and iron EFPs against steel targets [A]. 15th International Symposium on Ballistics [C]. Israel, 1995:399-404.
  • 4[4]Bouet T H, Tarayre P, Guillon J P. Study of a multi-point ignition EFP [A]. 15th International Symposium on Ballistics [C]. Israel, 1995:159-166.
  • 5[5]Murphy M, Weimann K, Doeringsfeld K, et al. The effect of explosive detonation wave shaping on EFP shape and performance [A]. 13th International Symposium on Ballistic [C]. Stockholm, 1992:29-36.
  • 6[6]Blache A, Weimann K. Generation of different detonation wave contours [A]. 16th International Symposium on Ballistics [C]. San Francisco, USA, 1996:337-346.
  • 7[7]Tosello R. Twin EFPs for underwater applications [A]. 16th International Symposium on Ballistics [C]. San Francisco, USA, 1996:122-129.
  • 8[8]Jach K, Mroczkowski M, Sarzynski A, et al. 3D free particle computer modeling of explosive formation of projectiles [A]. 16th International Symposium on Ballistics [C]. San Francisco, USA, 1996:547-554.
  • 9[9]Weickert C A, Gallagher P J. Ogive-nosed, finned, explosively formed projectiles [A]. 16th International Symposium on Ballistics [C]. San Francisco, USA, 1996:603-604.

共引文献20

同被引文献33

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部