摘要
中国钢铁企业的库存成本占产品总成本的32%到36%,超过生产的直接成本.因此,降低库存水平能够直接影响企业的竞争力.以上海宝钢为背景研究了钢铁企业的原料库存问题.建立了原料库存优化模型,用于确定各种原料的最佳库存水平和补库时间间隔,以实现原料库存相关成本的最小化.同时给出了相应的求解方法,即将拉格朗日松弛、序贯引入约束法和启发式算法结合使用的方法.并根据宝钢的实际生产情况产生的数据进行了仿真计算,实验结果表明这种方法能够在允许的时间内得到高质量的解.
Now, the inventory cost amounts to 32% --36% of the total cost in China's iron and steel industry, i.e., greater than its direct production cost. So, lowering inventory level means an improvement of a company's competitive power. Taking the Shanghai Baoshan Iron and Steel Complex (Baosteel) as an example, the problem of raw material inventory was investigated to develop an inventory optimization model which can determine appropriate inventory levels and schedule adaptable intervals between replenishment times for each and every raw material so as to minimize all the costs relevant to raw material inventories. A corresponding solution was thus given methodologically to the model combing Lagrangian relaxation, algorithm of ordinal introduction of constraints with heuristic algorithms. A numerical simulation was carried out according to the actual production figures of Baosteel, and the results showed that the approach proposed enables the high-quality solutions within permissible time.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第2期172-175,共4页
Journal of Northeastern University(Natural Science)
基金
国家杰出青年科学基金资助项目(70425003)
国家自然科学基金资助项目(6067408460274049)
高等学校优秀青年教师教学科研奖励计划项目(教育司[2002]383)
关键词
库存
生产计划
组合最优化
拉格朗日松弛
序贯引入约束法
inventory
production planning
combinatorial optimization
Lagrangian relaxation
algorithm of ordinal introduction of constraints