期刊文献+

轧制制度对闭孔泡沫铝材料塑性的影响 被引量:1

Effect of Rolling Schedule on Plasticity of Closed-Cell Aluminum Foam
下载PDF
导出
摘要 研究了采用熔体发泡法制备的闭孔泡沫铝材料的轧制过程,分析了不同道次压下量条件下泡沫铝的变形特点与破坏方式,探讨了影响泡沫铝轧制能力的主要因素.结果表明:闭孔泡沫铝的轧制应遵循多道次、小变形的原则.道次压下量为0.1 mm时,Si质量分数为12%的泡沫铝(厚度约11 mm)经10道次变形后可实现1 mm的总变形量.道次压下量过大时泡沫铝的破坏方式为典型的脆性断裂,适宜的压下量则有利于发挥泡沫铝良好的吸能性,但小变形时易出现弯曲而使材料最终发生剪切破坏.提高泡沫铝轧制能力的具体方法为降低基体中的Si含量,提高材料组织性能的均一性,轧制工艺中采用适宜的道次压下量和较低的轧制速度. The rolling process of closed-cell aluminum foam that was prepared by melt-foaming process was studied, as well as its deformation and failure behavior due to different pass reduction. Then, the main influencing factors on the roll ability of aluminum foam was discussed. The results showed that in the rolling process of closed-cell aluminum foam the basic principle is multiple pass with small deformation, e g., when the pass reduction is 0.1 mm, the 11 mm-thick aluminum foam in which the Si content is 12wt% can be deformed by 1 mm finally. When the pass reduction is too big, the failure of aluminum foam is typically in form of brittle fracture, The pass reduction taken should be proper for the excellent energy-absorbing characteristic of aluminum foam, but the very small deformation will be easy to lead the rolled piece to be bent then shear failure finally. The way to improve the roll ability of aluminum foam is to decrease its Si content and ensure the homogeneity of its microstructure and mechanical properties and especially adopt proper pass reduction with low rolling speed.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第2期237-240,共4页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2004AA33G060)
关键词 闭孔泡沫铝材料 轧制 道次压下量 脆性断裂 吸能性 closed-cell aluminum foam rolling pass reduction brittle fracture energy-absorbing characteristic
  • 相关文献

参考文献3

二级参考文献24

  • 1刘培生,俞冰,胡安民,梁开明,顾守仁.Development in applications of porous metals[J].中国有色金属学会会刊:英文版,2001,11(5):629-638. 被引量:4
  • 2[5]Gergely V, Degischer H P, Clyne B. Aluminum foam for automotive applications[J]. Advanced Eng Mater,2002, 2: 175-178.
  • 3[6]Lorenzi L, Fossat E, Todaro E. Aluminum foam applications for impact energy absorbing structures[A].Proceedings of the Applications for Aluminum in Vehicle Design [C]. Detroit, Michigan, USA, 1997, 23.
  • 4[7]Claar T D, Irick V, Adkins J. Multifunctionality of closed-cell aluminum foams[A]. TMS 2002[C]. Seattie, Washington, USA, 2002.
  • 5[8]Jahn R, Sherman A M. Perspectives on high-volume automotive applications of light-weight cellular metals and structures[A]. TMS 2002[C]. Seattle, Washington, USA, 2002.
  • 6[10]Ashby M F, Fleck N A. Metal Foams: A Design Guide [M]. Oxford, UK: Butterworth-Heinemann,2000. 40, 77.
  • 7[11]Olurin O B, Fleck N A, Ashby M F. Deformation and fracture of aluminum foams[J]. Mater Sci Eng A, 2000, A291: 136-146.
  • 8[12]Bart-Smith H, Evans A G, Spyeck D J , et al. Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping[J]. Acta Mater, 1998,46:3583 - 3592.
  • 9[13]Sugimura Y, Bart-Smith H, Evans A G, et al. On the mechanical performance of closed cell Al alloy foams[J]. Acta Mater, 1997, 45:5245-5259.
  • 10[14]Markaki A E, Clyne T W. The effect of cell wall microstructure on the deformation and fracture of aluminum-based foams[J]. Acta Mater, 2001, 49:1677 -1686.

共引文献31

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部