期刊文献+

基于BP网络的粉煤灰混凝土钢筋握裹力计算

Calculation of Bonding Strength of Fly-Ash Concrete Based on BP Network
下载PDF
导出
摘要 基于改进的BP算法,建立了2个粉煤灰混凝土钢筋握裹力BP网络计算模型,模型1为2-6-1型,即该模型输入层为2个神经元,隐含层为6个神经元,输出层为1个神经元,模型1的输入为水胶比及粉煤灰掺量,输出为混凝土钢筋握裹力;模型2为2—8—2型,即该模型输入层为2个神经元,隐含层为8个神经元,输出层为2个神经元,模型2的输入为水胶比及粉煤灰掺量,输出为混凝土强度及钢筋握裹力.模型1混凝土钢筋握裹力计算相对误差为0.01908%~3.12892%;摸型2混凝土强度及钢筋握裹力计算相对误差分别为2.24855%~6.80800%和0.11274%~9.77329%.计算结果较为理想. Based on the optimized BP algorithm, two computation models are developed for the bonding strength of fly-ash concrete which wraps reinforcements. The model 1 is of 2-6-1 type, i. e., 2,6 and 1 neurons are in input, hidden and output layers, respectively, where the input is defined including the water-binder ratio and fly-ash content and the output as the bonding strength of the concrete. The model 2 is of 2-8-2 type, i.e., 2, 8 and 2 neurons are in input, hidden and output layers, respectively, where the input is the same to that in model 1 but the output includes the compressive strength in addition to the bonding strength of the concrete. The relative error of the bonding strength calculated through model 1 is 0.019 08 %- 3. 128 92 %, while the relative errors of the compressive strength and bonding strength calculated through model 2 are 2.248 55% -6.808 00% and 0. 112 74% -9.773 29%, respectively. Such results are quite .satisfactory.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第2期274-277,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50174013)
关键词 BP网络 粉煤灰混凝土 钢筋握裹力 抗压强度 水胶比 BP network fly-ash concrete bonding strength compressive strength water-binder ratio
  • 相关文献

参考文献8

  • 1Portmann N F,Lindhoff G S.Application of neural networks in rolling mill automation[J].Iron and Steel Engineer,1995,72(2):33-36.
  • 2Tsou P,Shen M H H.Structural damage detection and identification using neural networks[J].AIAA Journal,1994,32(1):176-183.
  • 3Wu X,Ghaboussi J,Garrett J H.Use of neural networks in detection of structural damage[J].Computers & Structure,1992,42:649-659.
  • 4Hunt K J,Sbarbaro D,Zbikowski R,et al.Neural networks for control system-A survey[J].Automatica,1992,28(6):1083-1112.
  • 5Venkatasubramanien V,Chan K.A Neural network methodology for process fault diagnosis[J].AICHE Journal,1989,35(12):1993-2002.
  • 6Antsaklis P J.Neural networks in control systems[J].IEEE Control Systems Magazine,1992,12(2):8-10.
  • 7HaganMT DemuthHB BealeMH 戴葵 宋辉 潭明峰 等译.神经网络设计[M].北京:机械工业出版社,2002..
  • 8周万良,周士琼,李益进,高英力.水胶比、超细粉煤灰掺量对高性能混凝土钢筋握裹力的影响[J].混凝土与水泥制品,2003(2):16-18. 被引量:9

二级参考文献3

  • 1.505—80.水工混凝土试验规程[S].中华人民共和国水利电力部,..
  • 2周士琼 尹键 谢友均 等.超细粉煤灰高能性混凝土的性能[J].山东建材学院学报,1998,.
  • 3吴中伟 廉慧珍.高性能混凝土[M].中国铁道出版社,1990..

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部