摘要
讨论了负相伴样本情形线性指数分布参数的经验Bayes(EB)单侧检验问题.利用概率密度函数的核估计构造了参数的经验Bayes单侧检验函数,在适当的条件下证明了所提出的经验Bayes检验函数的渐近最优(a.o.)性并获得了其收敛速度.最后给出一个有关主要结果的例子.
By using the kernel-type density estimation in the case of identically distributed and negatively associated samples, the empirical Bayes one-sided test rules for the parameter of linear exponential distribution are constructed. The asymptotically optimal property and convergence rates for the proposed EB one-sided test rules are obtained under suitable conditions. Finally, an example about the main results of this paper is given.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第2期92-97,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(10301011)
关键词
经验BAYES检验
渐近最优性
收敛速度
负相伴样本
empirical Bayes test
asymptotic optimality
convergence rates
negatively associated samples