期刊文献+

相干点源照明时消球差光学系统的像场结构

Structure of image fields in an aplanatic optical system with coherent point source illumination
原文传递
导出
摘要 利用矢量傅里叶变换和稳相法获得了相干点源位于光轴上任意位置时,消球差光学系统像场结构的积分表达式,详细研究了使用线偏振光照明时像平面上大物方孔径角对像场结构的影响.模拟计算表明,在像空间垂直于光轴的平面上,如果物方孔径角较大,磁场分布绕光轴旋转90°后不再与电场分布相同,电场能量密度、磁能量密度和玻印亭矢量分布的等高线始终近似为椭圆,并且物方孔径角是导致玻印亭矢量分布失去圆对称性的主要因素.同时当使用小像方孔径角时,电场能量密度分布形状的长轴方向垂直于物空间电场的振动方向;随着像方孔径角逐渐增大,电场能量密度分布形状的长轴方向将逐渐变为与物空间电场的振动方向相同.这些结论完全不同于以前理论所预测的结果. Using the vector Fourier transform and stationary phase method, an integral representation of the structure of image field in an aplanatic system with polarized point source located at arbitrary position on the optical axis is obtained. Effects of wide aperture angle in object space on the structure of image field are examined numerically for the case of linearly polarized illumination. Simulation calcalations show that, in a plane perpendicalar to the optical axis, if the object space aperture angle is wide, the distribution of magnetic field will not be identical to that of electric field after they are rotated 90° around the optical axis with respect to each other, the contours of distribution of the electric and magnetic energy densities and the Poynting vector are approximately elliptical, and the object space aperture angle is the dominant factor that makes the distribution of Poynting vector lose circular symmetry. At the same time, the major axis of the contour of distribution of the electric energy density is perpendicalar to the direction of the electric vector in the object space when using small image aperture angle, and will turn graduately to the same direction as the electric vector in the object space with the increase of image aperture angle. These conclusions are completely different from the predications of the previous theory.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第2期811-818,共8页 Acta Physica Sinica
基金 国家重点基础研究发展计划(973)项目(批准号:2005CB724304) 上海市重点学科建设项目(批准号:T0501) 国家自然科学基金(批准号:60478045) 上海市科学技术发展基金(批准号:04dz05110) 高等学校博士学科点专项科研基金(批准号:20040252004)资助的课题~~
关键词 成像系统 像场结构 矢量傅里叶变换 稳相法 imaging systems, structure of the image field, vector Fourier transforms, stationary phase method
  • 相关文献

参考文献20

  • 1Born M, Wolf E 1999 Principles of optics (Cambridge: Cambridge University Press, 7th ed)
  • 2McGuire J P, Jr., Chipman R A 1990 J. Opt. Soc. Am. A 7 1614
  • 3Yasuyuki U 2002 J. Opt. Soc. Am. A 19 781
  • 4Oron R, Bih S, Davidson N, Friesem A A, Bomzon Z, Hasman E 2000 Appl. Phy.Lett. 77 3322
  • 5Foley J T, Wolf E 2005 Opt. Lett. 30 1312
  • 6Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901
  • 7Wolf E 1959 Proc. R. Soc. London, Ser. A 253 349
  • 8Richards B, Wolf E 1959 Proc. R. Soc. London, Ser. A253 358
  • 9张艳丽,赵逸琼,詹其文,李永平.高数值孔径聚焦三维光链的研究[J].物理学报,2006,55(3):1253-1258. 被引量:10
  • 10Youngworth K S, Brown T G 2000 Opt. Express 7 77

二级参考文献22

  • 1纪宪明,印建平.冷原子或冷分子囚禁的可控制光学双阱[J].物理学报,2004,53(12):4163-4172. 被引量:19
  • 2Ashkin A, Dziedzic J M, Yamane T 1987 Nature (London) 330 769.
  • 3Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H 1998 Nature 394 348.
  • 4Simpson N B, Dholakia K, Allen L, Padgett M J 1997 Opt. Lett.22 52.
  • 5Case R B, Chang Y P, Smith S B, Gore J, Cozzarelli N R,Bustamante C 2004 Science 305 222.
  • 6Dora R, Quabis 5, Leuchs G 2003 J. Mod. Optics 50 1917.
  • 7Marttnez-Corral M, CIbanez-Lopez, Tcaballero M, LMunoz-Escfiva 2003 J. Phys D : Appl Phys. 36 1669.
  • 8Youngworth K S. Brown T G 2000 Opt. Express 7 77.
  • 9Dora R, Quabis S, Leuehs G 2003 Phys. Rev. Lett. 91 233901.
  • 10Schuster K 2001 US patent # 6191880 B1.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部