摘要
利用理论解析推导的方法,在傍轴近似条件下,给出了一组新的超短脉冲光束的解析解,称为超短脉冲复宗量辛格高斯光束.此脉冲光束解的每个频率分量都是复宗量高斯光束,时间脉冲的形状为辛格函数.对这种超短脉冲光束及其在自由空间中的传输过程进行了较为细致的研究,讨论了超短脉冲复宗量辛格高斯光束的轴上光强、光强的横向分布、脉冲极性反转、脉冲延迟等性质.
By using slowly-varying envelope approximation, a family of solutions of the paraxial wave equation are found in theory, which represents a new family of ultrashort pulsed beams called ultrashort pulsed complex argument Sinc-Gaussian beams. These pulsed beams with a certain frequency have a nearly complex argument Gaussian profile, a sinc function temporal shape. The ultrashort pulsed complex argument Sinc-Gaussian beams and their propagation properties in free space are studied detailedly, such as intensity on the axis, transversal intensity distribution of the pulsed beams, polarity reversal, pulse time delay, etc..
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2007年第2期859-862,共4页
Acta Physica Sinica
基金
国家自然科学基金面上项目(批准号:60278013)
国家高技术研究发展计划专项经费
河北省教育厅科学研究计划(批准号:2006111)
河北省自然科学基金(批准号:F2006000183)
河北省科学技术研究与发展指导计划(批准号:06213525)资助的课题~~
关键词
脉冲光束
缓变包络近似
脉冲传输
pulsed beam, slowly-varying envelope approximation, pulse propagation