期刊文献+

基于模糊神经网络的电力负荷短期预测 被引量:31

Short-Term Load Forecasting Based on Fuzzy Neural Network
下载PDF
导出
摘要 针对电力负荷的特点,综合考虑了温度及日期类型等因素对日最大负荷的影响,提出了一种采用模糊神经网络进行短期负荷预测的方法,并详细介绍了该方法的实现过程。通过对EUNITE(the European Network of Excellence on Intelligent Technologies for Smart Adaptive Systems)网络提供的实际数据进行详细分析确定了影响日最大负荷的相关因素,进而选择了合适的模糊输入以建立相应的模糊神经网络预测模型,并取得了较为理想的预测结果。算例分析结果充分证明了模糊神经网络在短期电力负荷预测方面具有较好的应用前景。 According to features of power load and considering the combined influence of temperature and day type, a fuzzy neural network approach based short-term load forecasting method is proposed and its implementation are presented in detail. By means of detailed analysis of the actual data offered by EUNITE(the European Network of Excellence on Intelligent Technologies for Smart Adaptive Systems) network, the correlative factors influencing daily peak load are determined, Here from appropriate fuzzy inputs are chosen and corresponding forecasting model based on fuzzy neural network is built. The forecasting results based on the data from East-Slovakia Power Distribution Company show that fuzzy neural network possesses evident potentiality in the field of short-term load forecasting.
机构地区 天津大学理学院
出处 《电网技术》 EI CSCD 北大核心 2007年第3期68-72,共5页 Power System Technology
基金 南开大学-天津大学刘徽应用数学中心资助(H10118)
关键词 短期负荷预测 日最大负荷 模糊神经网络 EUNITE竞赛 short-term load forecasting: daily peak load fuzzy-neural network EUNITE competition
  • 相关文献

参考文献20

  • 1Haida T,Muto S.Regression based peak load forecasting using a transformation technique[J].IEEE Trans on Power Systems,1994,9(4):1788-1794.
  • 2Vila J P,Wagner V,Neveu P.Bayesian nonlinear model selection and neural network:a conjugate prior approach[J].IEEE Trans on Neural Networks,2000,11(2):265-278.
  • 3Rewagad A P,Soanawane V L.Artificial neural network based short term load forecasting[C].IEEE Region 10th International Conference on Global Connectivity in Energy,Computer,Communication and Control,1998.
  • 4程其云,王有元,陈伟根.基于改进主成分分析的短期负荷预测方法[J].电网技术,2005,29(3):64-67. 被引量:34
  • 5Kassaei H R,Keyhani A,Woung T.A hybrid fuzzy neural network bus load modeling and predication[J].IEEE Trans on Power Systems,1999,14(2):718-724.
  • 6Senjyu T,Takara H,Funabashi T.One-hour-ahead load forecasting using neural network[J].IEEE Trans on Power Systems,2002,17(1):113-118.
  • 7Kim K H,Youn H S,Kang Y C.Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method[J].IEEE Trans on Power Systems,2000,15(2):559-565.
  • 8鲍正江,胡海兵.一种基于神经网络的电力负荷预测方法[J].浙江电力,2004,23(4):10-13. 被引量:10
  • 9姚李孝,姚金雄,李宝庆,万诗新.基于竞争分类的神经网络短期电力负荷预测[J].电网技术,2004,28(10):45-48. 被引量:23
  • 10卫志农,王丹,孙国强,郑玉平.基于级联神经网络的短期负荷概率预测新方法[J].电工技术学报,2005,20(1):95-98. 被引量:14

二级参考文献59

  • 1王辛.改进径向函数网格(RBFN)在电力负荷预报中的应用[J].中国电机工程学报,1996,16(4):285-287. 被引量:6
  • 2边肇祺.模式识别[M].北京:清华大学出版社,1998..
  • 3冯英浚 张少仲 等.BP网络瘫痪的原因分析[J].哈尔滨工业大学学报,2000,32(5):81-83.
  • 4刘晨辉.电力系统负荷预报理论与方法[M].哈尔滨:哈尔滨工业大学出版社,1987..
  • 5袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,2000..
  • 6.GB7252-87.变压器油中溶解气体分析和判断导则[S].,..
  • 7Duval M, Langdeau F, Gerais P, et al. Acceptable gas-in-oil levels in generation and transmission power transformers, electrical insulation and dielectric phenomena[C]. Annual Report, Conference on 1990,Pocomo Manor, PA, USA.
  • 8Su Q, Mi C, Lai L L, et al. A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer[J]. IEEE Transactions on Power Systems, 2000, 15(2); 593-598.
  • 9Islam S M, Wu T, Ledwich G. A novel fuzzy logic approach to transformer fault diagnosis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(2): 177-186.
  • 10Vapnik V N. The nature of statistical learning theory [M]. New York:Springer-Verlag, 1995.

共引文献427

同被引文献391

引证文献31

二级引证文献483

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部