期刊文献+

定制化胫骨平台系统的构建及应用 被引量:3

Construction and Application of Custom-made Tibial Plateau System
下载PDF
导出
摘要 为解决传统人工胫骨平台假体个体匹配性差,结构强度与生物活性难统一等问题,提出了定制化复合增强型人工胫骨平台系统的设计制造方法。采用解剖学建模技术设计出外形匹配,内含三维网状构架的复合假体模型,利用快速成型技术制造出假体的树脂原型,并分别通过精密铸造和粉末烧结技术制造出钛合金胫骨平台和大段多孔陶瓷人工骨。结果显示,该方法能快速而精确地制造出形状复杂的人工胫骨平台系统,是实现假体定制化制造的有利保证;通过将金属假体和多孔陶瓷人工骨复合,解决了载重部位大段骨缺损的修复问题。临床应用表明,该假体能与对侧关节匹配运动,通过将机械重建与生物重建相结合可实现受损关节的功能重建。 In order to improve the individual matching and balance the mechanical strength with bioactivity for artificial tibial tray substitute, a custom-made design and fabrication approach was presented. Anatomical modelling was adopted to construct the composite substitute with biomimetic shape and three-dimensional interconnected microstructures. Rapid prototyping (RP) was employed to build the resin mold, based on which the titanium-alloy tibial tray and porous ceramic artificial bone was fabricated via quick casting and powder sintering techniques. Results showed that this method enabled to fabricate the complex artificial tibial tray system rapidly and provided a new way to repair large segment bone defects for loading site via composing titanium-alloy prosthesis and porous ceramic artificial bone. The clinical example verified the efficiency of the composite tibial substitute to restore the damaged joint function via combining mechanical and biological reconstruction.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2007年第1期134-137,143,共5页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(No.50235020) 国家自然科学基金资助项目(No.50575170) 高等学校博士学科点专项科研基金资助项目(No.20050698002)
关键词 定制化 胫骨平台 复合假体 快速成型 custom-made tibial plateau composite substitute rapid prototyping
  • 相关文献

参考文献20

  • 1Sun Wei,Darling A, Starly B, et al. Computer aided tissue engineering: overview ,scope and challenges [J].J Biotechnol Appl Biochem. 2004. 39 (1) : 29 - 47.
  • 2Sun Wei,Starly B,Darling A,et al.Computer-aided tissue engineering:application to biomimetic modelling and design of tissue scaffolds[J].Biotechnol Appl Biochem,2004,39(1):49-58.
  • 3Hollister SJ,Maddox RD,Taboas JM.Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints [J].Biomaterials,2002,23(20):4095-4103.
  • 4Hutmacher DW.Scaffolds in tissue engineering bone and cartilage [J].Biomaterials,2000,21(24):2529-2543.
  • 5Hutmacher DW,Sittinger M,Risbud MV.Scaffold-based tissue engineering:rational for computer -aided design and solid free-form fabrication systems[J].Trends Biotechnol,2004,22(7):354-362.
  • 6Van Tienen TG,Heijkants RGJC,Buma P,et al.Tissue ingrowth and degradution of two biodegradable porous polymers with different porosities and pore sizes[J].Biomaterials,2002,23(8):1731-1738.
  • 7Zhang Ze,Wang Zhaoxu,Liu Shuqin,et al.Pore size,tissue ingrowth,and endotheliatization of small-diameter microporous polyurethane vascular prostheses[J].Biomaterials,2004,25(1):177-187.
  • 8O'Brien FJ,Harle BA,Yannas IV,et al.The effect of pore size on cell adhesion in collagen-GAG,scaffolds[J].Biomaterials,2005,26(4):433-441.
  • 9Kester MA,Cook SD,Harding AE,et al.An evaluation of the mecharical failure modalities of a rotating hinged knee prosthesis [J].Clinorthop,1988,228(1):156-162.
  • 10Singare S,Li Dichen,Lu Bingheng,et al.Customized design and manufacturing of chin implant based on rapid prototyping [J].Rapid Prototyping Journal,2005,11(2):113-118.

二级参考文献7

共引文献153

同被引文献67

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部