摘要
研究高阶微分方程x(n)(t)=f(t,x(t),x′(t),,x(n-1)(t)),0<t<1满足边值条件1(1)m i(i)ixαxξ==∑,x(i)(0)=0(i=0,1,…,n-2)或(2)(2)1n(1)mi n(i)i(0)0ixαxξx==∑,=(i=0,1,…,n-2)解的存在性,其中,αi∈R(i=1,,m),n≥2是整数,且0<ξ1<<ξm<1,f连续,并分别获得了这些问题存在解的充分条件.与传统结果相比,本文定理中的非线性项可以依赖于所有的低阶导数.
Given the higher-order differential equation x^(n)(t)=,(t,x(t),x'(t),…,x^(n-1)(t)),0〈t〈1 being subjected to one of the following multi-point boundary value conditions x(1)=∑i=1^ma jx(ξi),x^(i)(0)=0(i=0,1,…,n-2)and x^(n-2)(1)=∑i=1^naix^(n-2)(ξi),x^(i)(0)=0(i-0,1,…,n-2 , sufficient conditions for the existence of at least one solution at resonance would be established, It is emphasized thatfdepends on all lower-order derivatives.
出处
《湖南农业大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第1期122-126,共5页
Journal of Hunan Agricultural University(Natural Sciences)
基金
湖南省教育厅项目(06C749)
关键词
高阶微分方程
多点边值问题
可解性
higher order differential equation
multi-point boundary value problem
solvability