摘要
在有限自动机矩阵模型表示方法基础上,采用矩阵理论和布尔代数为工具,主要对布尔状态映射矩阵B(x)进行讨论。首先对它进行了变化,然后用它的变化式来判断有限自动机的状态有无前邻,有限自动机是否强连通,同时它们也提供一些构造子有限自动机和有效地划分布尔状态映射矩阵B(x)为标准型的新方法。
Based on the matrix model of a finite automata and with the tools of the Matrix theory and the Boolean algebra,this paper discusses mainly on the Boolean-state-mapping Matrix.Firstly we give a series of transformations to the Boolean-statemapping matrix B(x).Secondly we make use of the transformations to judge whether the finite automata has the property of predecessor and whether the finite automata is strongly connected.And they also provide some new methods on how to construct a sub-automata and how to divide the Boolean-state-mapping matrix B(x) into the standard form effectively.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第4期30-35,81,共7页
Computer Engineering and Applications
基金
国家自然科学基金(the National Natural Science Foundation of China under Grant No.60473005)
广西省自然科学基金(the Natu-ral Science Foundation of Guangxi Province of China under Grant No.0640061)
教育部优秀青年教师资助项目(2002-40)。
关键词
有限自动机
矩阵模型
布尔状态映射矩阵
前邻
强连通
finite automata
matrix model
boolean-state-mapping matrix
predecessor
strongly connected