期刊文献+

基于锦标赛选择遗传算法的随机微粒群算法 被引量:17

Stochastic particle swarm optimization algorithm based on genetic algorithm of tournament selection
下载PDF
导出
摘要 以保证全局收敛的随机微粒群算法SPSO为基础,提出了一种改进的随机微粒群算法——GAT-SPSO。该方法是在SPSO的进化过程中,以锦标赛选择机制下的遗传算法所产生的最优个体来代替SPSO中停止的微粒,参与下一代的群体进化。通过对三个多峰的测试函数进行仿真,其结果表明:在搜索空间维数相同的情况下,GAT-SPSO的收敛率及收敛速度均大大优于SPSO。 Based on the stochastic particle swarm optimization algorithm that guarantees global convergence,an improved stochastic particle swarm optimization algorithm-GAT-SPSO is proposed.During the evolution of SPSO,the best particle produced by genetic algorithm of tournament selection substitutes for the stopping particle and takes part in the evolution of next generation. Through the experiments of three muhi-modal test functions,the result of simulation proves that the speed of convergence and the rate of convergence for GAT-SPSO are better than SPSO at the same dimension of search space.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第4期51-53,84,共4页 Computer Engineering and Applications
基金 国家教育部重点科技项目(the Key Technologies Project of the Ministry of Education of China No.204018)。
关键词 随机微粒群算法 遗传算法 锦标赛选择 全局优化 Stochastic Particle Swarm Optimization(SPSO) Genetic Algorithm (GA) tournament selection global optimization
  • 相关文献

参考文献8

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE Int Conf on Neural Networks.Piscataway:IEEE Service Center,1995:1942-1948.
  • 2Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability[C]//G L Torres,A P Alves da Silva.Proc Intl Conf on Intelligent System Application to Power Systems,Rio de Janeiro,Brazil,1999:117-121.
  • 3Van den Bergh F.An analysis of Particle Swarm Optimizers[D].Department of Computer Science,University of Pretoria,South Africa,2002.
  • 4Van den Bergh F,Engelbrecht A.A new locally convergent particle swarm optimization[C]//2002 IEEE International Conference on Systems,Man and Cybernetics,2002.
  • 5Van den Bergh F,Engelbrecht A.Using Neighborhood with the Guaranteed Convergence PSO[C]//2003 IEEE Swarm Intelligence Symposium,USA,2003:235-242.
  • 6曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 7王浩,曹一家,陆金桂,等.遗传算法原理及其工程应用[M].北京:中国矿业大学出版社,1997.
  • 8潘正君,康立山,陈毓屏.演化计算[M]. 北京:清华大学出版社,1997.

二级参考文献7

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975

共引文献164

同被引文献170

引证文献17

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部