期刊文献+

GARCH模型在我国深市风险度量中的应用研究 被引量:2

Research of GARCH Model Applying to Measuring Risks in Chinese Stock Market
下载PDF
导出
摘要 介绍了VaR的含义及计算方法,指出推测市场因子的波动率是计算的关键。从理论上对基于t分布和正态分布的GARCH模型进行了比较,得出基于t分布的GARCH模型更能刻画金融市场“尖峰厚尾”等实际特征。将基于不同分布的GARCH模型应用于我国深圳股市的风险度量,通过对比VaR的估计结果,说明基于t分布GARCH模型计算的VaR更有效地反映了金融市场的风险水平。 This paper reviewed the concept of VaR( Value at Risk) and its calculating method, and pointed out that predicting the volatiedlity rate of market factors is the key to VaR. By comparing GARCH- t Model with GARCH- N Model, this paper considered that GARCH- t Model is superior for describing the characters of financial market. By comparing the results of applying different GARCH Model to VaR in Shenzhen Stock Market, it came to a conclusion that GARCH- t Model is more effective on VaR in the financial market.
出处 《广西财经学院学报》 2007年第1期63-66,80,共5页 Journal of Guangxi University of Finance and Economics
基金 陕西省教育厅自然科学专项基金资助项目(项目编号:05JK207)
关键词 VAR GARCH-N模型 GARCH-T模型 VaR(Value at Risk) GARCH- N Model GARCH- t Model
  • 相关文献

参考文献4

二级参考文献13

  • 1[1]Kim S, Shephard N, Chib S. Stochastic volatility: Likelihood inference and comparison with ARCH models[J]. Review of Economic Studies, 1998, 65:361-393.
  • 2[2]Lehar A, Scheicher M, Schittenkopf C. GARCH vs. stochastic volatility: Option pricing and risk management[J]. Journal of Banking & Finance, 2002, 26: 323-345.
  • 3[3]Jacquier E, Polson N G, Rossi P E. Bayesian analysis of stochastic volatility models[J]. Journal of Business & Statistics, 1994, 12(4): 371-389 .
  • 4[4]Bauwens L, Lubrano M. Bayesian inference on GARCH models using the Gibbs sampler[J]. Econometrics Journal, 1998, 1: 23-46.
  • 5[5]Bollerslev T. Generalized auto-regressive conditional heteroskedasticity [ J]. Journal of Econometrics, 1986, 31: 307-327.
  • 6[6]Hansen P, Lnnde A. A forecast comparison of volatility models: Does anything beat a GARCH( 1,1 ) [ EB/OL]. http://www, econ.brown, edu/fac/Peter_ Hansen, 2001 - 04.
  • 7[7]Mahieu R J, Schotman P C. An empirical application of stochastic volatility models[J]. Journal of Applied Econometrics, 1998,13: 333-360.
  • 8[8]Walsh B. Markov chain monte carlo and Gibbs sampling[ EB/OL]. http://nitro, biosci, arizona, edu/courses/ EEB596/handouts/Gibbs. pclf, 2002.
  • 9[9]Engle R F, Patton A J. What good is a volatility model[J]. Quantitative Finance, 2001, 1: 237-245.
  • 10[10]Meyer R, Yu J. Bugs for a Bayesian analysis of stochastic volatility models[J], Econometrics Journal, 2000, 3(2): 198-215.

共引文献13

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部