期刊文献+

一种基于遗传算法的兴趣规则挖掘算法

Discovering Interesting Knowledge with a Genetic Algorithm
下载PDF
导出
摘要 数据挖掘是在数据中发现隐藏的结构和模式。但发现的许多模式对用户来说可能是已知的,从而使这些模式毫无意义,毫无兴趣性。文献中多强调分类规则的准确性和可理解性,但发现兴趣规则在数据挖掘算法中依然是一个令人生畏的挑战。本文采用一种遗传数据挖掘方法,在分类规则产生的同时对其兴趣性进行度量,直接产生兴趣规则。实验表明该方法是可行的、高效的。 Data - mining is the process of discovering hidden structure or patterns in data. However the discovered patterns may be obvious to the user and then become unvalued, namely no interestingness . Although the literature emphasizes predictive accuracy and comprehensibility, the discovery of interesting knowledge remains a formidable challenge for data mining algorithms. In this paper, the interesting rules are directly generated using a genetic algorithm. The scheme is proved be practicable and efficient.
作者 武永成 刘钊
出处 《微计算机应用》 2007年第2期117-120,共4页 Microcomputer Applications
关键词 数据挖掘 分类 遗传算法 规则兴趣性 Data mining, Classification, Genetic Algorithms, Rule Interestingness
  • 相关文献

参考文献5

  • 1韩家炜.数据挖掘概念与技术.北京.机械工业出版社,2004.
  • 2潘正军 康立山.演化计算[M].北京:清华大学出版社,1998..
  • 3Vasant Dhar, Dashln Chou &Foster Provost, Discovering Interesing Patterns for Investment Decision Making with GLOWER - A Genetic Learner Overlaid With Entropy Reduction , DMKD - 2000 [ M]
  • 4B. Liu,W Hsu and S. Chen Using general impressions to analyze discovered classification rules Third Int. Conf. On Knowledge Discovery and Data Mining ,KDD -97( AAAI Press , NewPort Beach, CA, USA 1997)31 -36
  • 5Shu Chen & Bing Liu . Generating Classification Rules According to User's Existing Knowledge . In SIAM Conference on Data Ming,2001.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部