摘要
研究形如div A(x,u(x))=0的A-调和方程,证明了其弱解满足局部Aλr双权Caccioppoli型不等式.其中算子A:Ω×Rn→Rn满足如下条件:对于正常数0<a b<∞,有:1)A(x,h)关于(x,h)∈Ω×Rn是连续的;2)A(x,h)b h p-1;3)〈A(x,h),h〉a h p;4)A(x,λh)=λp-2λA(x,h).这里x∈Ωa.e,h∈Rn和λ∈R.
A local two-weight Caccioppoli-type Inequality for weak solutions to A-harmonic equation has been established. For the A-harmonic equation div A(△↓u(x))=0, the operator A:Ω×R^n→R^n satisfies the conditions 1) A (x,h) is continuous about (x,h)∈Ω×R^n; 2) |A(x,h)|≤b|h|^p-1; 3) 〈A(x,h),h〉≥a|h|^p; 4) A(x,λh)=|λ|^p-2λA(x,h) for almost everyx x∈Ω and h∈R^n, λ∈R. Here 0〈a≤b〈∞ is a constant.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第3期130-134,共5页
Mathematics in Practice and Theory
基金
河北理工大学科学研究基金(200520)
河北省教育厅博士基金资助项目(B2004103)