期刊文献+

A-调和方程弱解的双权Caccioppoli型不等式 被引量:4

Two-Weight Caccioppoli-type Inequality for Weak Solutions to A-harmonic Equation
原文传递
导出
摘要 研究形如div A(x,u(x))=0的A-调和方程,证明了其弱解满足局部Aλr双权Caccioppoli型不等式.其中算子A:Ω×Rn→Rn满足如下条件:对于正常数0<a b<∞,有:1)A(x,h)关于(x,h)∈Ω×Rn是连续的;2)A(x,h)b h p-1;3)〈A(x,h),h〉a h p;4)A(x,λh)=λp-2λA(x,h).这里x∈Ωa.e,h∈Rn和λ∈R. A local two-weight Caccioppoli-type Inequality for weak solutions to A-harmonic equation has been established. For the A-harmonic equation div A(△↓u(x))=0, the operator A:Ω×R^n→R^n satisfies the conditions 1) A (x,h) is continuous about (x,h)∈Ω×R^n; 2) |A(x,h)|≤b|h|^p-1; 3) 〈A(x,h),h〉≥a|h|^p; 4) A(x,λh)=|λ|^p-2λA(x,h) for almost everyx x∈Ω and h∈R^n, λ∈R. Here 0〈a≤b〈∞ is a constant.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第3期130-134,共5页 Mathematics in Practice and Theory
基金 河北理工大学科学研究基金(200520) 河北省教育厅博士基金资助项目(B2004103)
关键词 A-调和方程 双权 Caccioppoli型不等式 A-harmonic equation two-weight Caccioppoli-type inequality
  • 相关文献

参考文献9

  • 1Martio O.Partial differential equations and quasiregular mappings[J].Lecture Notes in Mathematics,Springers-Verlag,1992,1508:65-79.
  • 2Iwaniec T.Sbordone C.Weak minima of variational integrals[J].J Reine Angew Math,1994,454:143-161.
  • 3Giaquinta M,Giust E.On the regularity of the minima of variational integrals[J].Acta Math,1982,150:31-46.
  • 4P Manfredi J.Villamor E.Regularity theory and traces of A-Harmonic functions[J].Trans Amer Math Soc,1996.348:755-766.
  • 5Garnett J B.Bounded Analytic Functions[M].Academic Press,New York,1970.
  • 6Heinonen J,Kilpelǎinen T,Martio O.Nonlinear Potential Theory of Degenerate Elliptic Equations[M].Clarendon,Oxford,1993.
  • 7Nolder C A.Hardy-littlewood theorems for solutions of elliptic equations in divergence form[J].Indiana University Mathematics journal,1991,40(1):149-160.
  • 8Yu G Reshetnyak.Space Mappings with Bounded Distortion[M].Trans of monographs,Amer Math Soc,Providence,1989,73:79-173.
  • 9高红亚.弱拟正则映射的若干性质[J].数学学报(中文版),2002,45(1):191-196. 被引量:6

二级参考文献16

  • 1Iwaniec T.,Martin G.,Quasiregular mappings in even dimensions,Acta.Math.,1993,170: 29-81.
  • 2Reshetnyak Yu.G.,Space Mappings with Bounded Distortion,Vol 73,Trans.Math.Mokeygraphs,Amer.Math.Soc.,1989.
  • 3Gehring F.W.,The LP-integrability of the partial derivatives of a quasiconformal mapping,Acta.Math.,1973,130: 165-277.
  • 4Gisquinta M.,Multiple Integrals in the Calculas of Variations and Nonlinear Elliptoc Systems,Ann.Math.Stud.,105,Princeton Univ.Press,1983.
  • 5Iwaniec T.,p-harmonic tensors and quasiregular mappings,Ann.of Math.,1992,136: 586-624.
  • 6Iwaniec T.,Sbordone C.,On the integrability of the jacobian under minimal hypothesis,Arch.Rat.Mech.Anal.,1992,119: 129-143.
  • 7Manfredi J.J.,Weakly monotone functions,J.Geom.Anal.,1994,4: 393-402.
  • 8Koskela P.,Manfredi J.J.,Villamor E.,Regularity theory and traces of A-harmonic functions,Trans.Amer.Math.Soc.,1996,348: 755-766.
  • 9Zheng Shenzhou,Fang Anlong,Partial regularity of A-harmonic equation and quasiregular mappings,Chinese Annals of Mathematics,1998,19A(1): 63--72 (in Chinese).
  • 10Iwaniec T.,Sbordone C.,Weak minima of variational integrals,J.Reine.Angew.Math.,1994,454: 143-161.

共引文献5

同被引文献17

  • 1包革军,李天祥,邢宇明.共轭A-调和张量的双权Hardy-Littlewood不等式[J].数学年刊(A辑),2005,26(1):113-120. 被引量:1
  • 2Gao Hongya,Li Juan,Deng Yanjun.EXTREMUM PRINCIPLE FOR VERY WEAK SOLUTIONS OF A-HARMONIC EQUATION[J].Journal of Partial Differential Equations,2005,18(3):235-240. 被引量:2
  • 3Giaquinta M, Giusti E. On the regularity of the minima of variational integrals[J]. Acta Math, 1982,148 (2):31-- 46.
  • 4Koskela P, Manfredi J, Villamor E. Regularity theory and traces of A-Harmonic functions[J]. Trans Amer Math Soc,1996,348(2) :755--766.
  • 5Garnett J B. Bounded Analytic Functions[M]. Academic Press, New York,1970.
  • 6Heinonen J, Kilpelainen T, Martio O. Nonlinear Potential Theory of Degenerate Elliptic Equations[M]. Clarendon, Oxford, 1993.
  • 7Ball J M, Murat F. W^l,p-quasiconvexity and varitional problems for multiple integrals[J]. J Funct Anal,1984, 58(3):225--253.
  • 8Ding S. New weighted integral inequalities for differential forms in some domains[J]. Pacific J of Math,2000, 194(1):43--56.
  • 9Nolder C A. Hardy-littlewood theorems for solutions of elliptic equations in divergence form [J]. Indiana University Mathematics Journal,1991,40(1):149--160.
  • 10Iwaniec T, Sbordone C. Weak minima of variational integrals[J]. J Reine Angew Math,1994,454(1):143--161.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部