期刊文献+

制备工艺对NiFe_2O_4分解CO_2活性的影响 被引量:2

Effect of NiFe_2O_4 Processing Technology on Decomposition of CO_2
下载PDF
导出
摘要 随着大气中CO2浓度的增加.温室效应日趋严重.促使人们对大气中CO2的转化与消除这一课题更加重视。1990年Yutaka Tamaura发现氧缺位磁铁矿几乎可以100%分解CO2后.为解决温室效应提供了一条新的探索途径。通过对不同铁酸盐MFe2O4(M=Fe,Mn,Co,Zn,Ni等)分解CO2活性的考察.发现铁酸镍在300℃分解CO2的活性比其它铁酸盐都好。NiFe2O4的制备最常采用的是共沉淀法、柠檬酸溶胶凝胶法和水热法.3种方法由于制备工艺的不同.所制样品在微观结构上存在一定的差异。文献有关共沉淀、溶胶凝胶法用以及水热法制备铁酸镍有一定的研究.但是比较3种不同制备工艺对NiFe2O4微观结构的影响,进而研究其对分解CO2性能影响的未见报道。本文主要目的是采用XRD、H2-TPR、N2吸附.脱附等手段以及CO2分解活性测试.考察由3种制备工艺(共沉淀法、柠檬酸溶胶凝胶法和水热法)得到的纳米铁酸镍在微观性质上的差异及其对分解CO2性能的影响。 Ultra-fine NiFe2O4 particles were prepared by co-precipitation, citrates sol-gel and hydrothermal methods, respectively. The relationships between decomposition of CO2 and microstructure of NiFe2O4 were studied by means of XRD, HE-TPR and low temperature N2 sorption isotherms. The crystallite size and the pore structure of samples were different with different synthesis methods. Although all samples were nano crystals with single spinel NiFe2O4 structure, their HE-reduction processes were different. NiFe2O4 prepared by co-precipitation methods had the smallest average crystallite size and the largest BET surface areas and showed the best decomposition activity, while NiFe2O4 prepared by hydrothermal method had the biggest average crystallite size and the smallest BET surface areas and the worst decomposition activity. The phases content, crystallite size and the performance on decomposing CO2 were different for different NiFe2O4 according to the results of XRD Rietveld analysis.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2007年第2期329-334,共6页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金资助项目(No.20277033)
关键词 制备工艺 NIFE2O4 微结构 CO2分解 processing technology NiFe2O4 mierostrueture decomposition of CO2
  • 相关文献

参考文献2

二级参考文献16

  • 1Kodama R H, Seaman C L. Low-temperature magnetic relaxation of organic coated NiFe2O4 particles. J. Appl. Phys.,1994;75(10) :5 639~5 641
  • 2Kagel R O, Nyquist R A. The handbook of infrared and raman spectra of inorganic compound and organic salts. 1990:488~489
  • 3伊凡·海耳布伦等编.汉译海氏有机化合物辞典.科学出版社,1964:902
  • 4张立德,牟季美.纳米材料和纳米结构.科学出版社,2001:74
  • 5Lee Jaegwang, Park Jaeyun, Kim Chulsung. Growth of ultra-fine cobalt ferriteparticles by a sol-gel method and their magnetic properties. Journal of Materials Science, 1998;33:3 965~3 968
  • 6YOKOYAMA M, OHTA E, SATO T et al. Magnetic properties of ultrafinepartieles and bulk material of cadmium ferrite [J]. J Magn Magn Mater, 1998,183:173-174.
  • 7LU GQ. Preface-nanomaterials in catalysis[J]. Catalysis Today,2001.68:1-2.
  • 8隋郁,苏文辉,郑凡磊,许大鹏.NiFe_2O_4纳米固体的穆斯堡尔谱研究[J].物理学报,1997,46(12):2442-2453. 被引量:4
  • 9巩雄,郭永,杨宏秀,陈文驹.纳米材料及其光学特性[J].化学通报,1998(3):19-21. 被引量:36
  • 10曲喜新.现代电子材料[J].电子元件与材料,1999,18(1):18-22. 被引量:5

共引文献8

同被引文献36

  • 1Srinivasan G, Tatarenko A S, Mathe V, et al. Microwave and MM-wave magnetoelectric interactions in ferrite-ferroelectric bilayers[J]. Eur Phys J B, 2009, 71(3): 371-375.
  • 2Pileni M P. Magnetic Fluids: Fabrication, Magnetic Properties, and Organization of Nanocrystals[J]. Adv Funct Mater, 2001, 11(5): 323-336.
  • 3Shultz M D, Calvinb S, Fatourosc P P, et al. Enhanced ferrite nanoparticles as MRI contrast agents[J]. Journal of Magnetism and Magnetic Materials, 2007, 311(1): 464-468.
  • 4Wang S X, Zhou Y, Sun W T. Preparation and characterization of antifouling thermosensitive magnetic nanopaxticles for applications in biomedicine[J]. Materials Science and Engineering C, 2009,29(4): 1196-1200.
  • 5Parmar H, Desai R, Upadhyay R V. Structural characterization of microwave-synthesized zinc-substituted cobalt ferrite nanoparticles[J]. Appl Phys A, 2011, 104(1): 229-234.
  • 6Chang M T, Chou L J, Hsien C. H, et al. Magnetic and Electrical Characterizations of Half-Metallic Fe304 Nanowires[J]. Adv Mater, 2007, 19(17):2290-2295.
  • 7Sugimoto M. The Past, Present, and Future of Ferrites[J]. J Am Ceram Soc, 1999, 82(2): 269-280.
  • 8Siddique M, Butt N M. Effect of particle size on degree of inversion in ferrites investigated by Mossbauer spectroscopy[J]. Physica B, 2010, 405(19): 4211-4215.
  • 9Xiong W Z, Kale G M. Electrochemical NO2 Sensor Using a NiFel.gA10.104 Oxide Spinel Electrode[J]. Anal Chem, 2007, 79 (10): 3561-3567.
  • 10Vidal-Abarca C, Lavela P, L. Tirado J. The Origin of Capacity Fading in NiFe2O4 Conversion Electrodes for Lithium Ion Batteries Unfolded by 57Fe Mossbauer Spectroscopy[J]. J Phys Chem C, 2010, 114(29): 12828-12832.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部