期刊文献+

减重平板训练在脊髓损伤患者康复治疗中的应用 被引量:2

原文传递
导出
摘要 当患者发生脊髓损伤(spinalcordinjury,SCI)后,其运动功能的恢复主要依赖于损伤部位上或下潜伏通路或未损伤神经的可塑性来实现。增强神经可塑性是SCI修复的重要策略之一,虽然在其实施途径及效应方面与其它策略存在协同现象,但其所具有的训练或任务依赖特性(task-dependentOFactivity.de.pendent)使它在SCI治疗占有特殊地位。Schwab认为,通过特殊形式韵康复训练能促进潜伏通路或未损伤神经的可塑性,将之与神经再生策略等联合应用可能是目前最具前景的SCI治疗方法之一。
出处 《中华物理医学与康复杂志》 CAS CSCD 北大核心 2007年第1期62-65,共4页 Chinese Journal of Physical Medicine and Rehabilitation
  • 相关文献

参考文献42

  • 1Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol, 2004,96 : 1954-1960.
  • 2Schwab ME. Repairing the injured spinal cord. Science, 2002,295 :1029-1031.
  • 3Harkenma SJ. Neural plasticity after human spinal cord injury:application of locomotor training to the rehabilitation of walking. Neuroscientist, 2001,7:455-468.
  • 4Care TJ. Innervation of locomotor movements by the lumbosacral cord in birds and mammals. J Exp Biol, 1962,39:239-242.
  • 5Grillner S. Locomotion in the spinal cat. In: Stein RB, Pearson KG,Smith RS,et al, eds. Control of posture and locomotion. Advances in behavioral biology. New York : Plenum Press, 1973:515-535.
  • 6Grillner S. Control of locomotion in bipeds, tetrapods and fish. In:Brookhart JM, Mountcastle VB, eds. Handbook of Physiology. Am Physiol Soc, 1981,26 : 1179-1236.
  • 7Crommert HW, Mulder T, Duysens J. Neural control of locomotion:sensory control of the centrol pattern generator and its relation to treadmill training. Gait Post, 1998,7:251-263.
  • 8Wirz M, Colombo G, Dietz V. Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psychi ,2001,71:93-96.
  • 9Protas EJ. Supported treadmill ambulation training after spinal cord injury:a pilot study. Arch Phys Med Rehabil,2001,82 :825-831.
  • 10Hicks AL, Adams MM, Ginis KM, et al. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI:effects on functional walking ability and measures of subjective well-belling. Spinal Cord, 2005,43 : 291-298.

二级参考文献34

  • 1Grillner S, Debuc R. Control of locomotion in vertebrates: Spinal and supraspinal mechanisms. In: Waxman SG. Advances in neurology, Vol. 47: Functional recovery in neurological disease. New York:Raven Press, 1988. 425-453.
  • 2Grillner S, Ekeberg O, El Manira A, et al. Intrinsic function of a neuronal network - a vertebrate central pattern generator. Brain Res Rev, 1998, 26: 184-197.
  • 3Fukuyama H, Ouchi Y, Matsuzaki S, et al. Brain functional activity during gait in normal subjects: A SPECT study. Neuro Sci Lett, 1997, 228: 183-186.
  • 4Shepherd R, Carr J. Treadmill walking in neurorehabilitation. Neurorehabil Neural Repair, 1999, 13: 171-173.
  • 5Barbeau H, Norman K, Fung J, et al. Does neurorehabilitation play a role in the recovery of walking in neurological populations? Ann N Y Acad Sci, 1998, 860: 377-392.
  • 6Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res, 1987, 412: 84-95.
  • 7Margaret H, Margaret HSR. Suspension therapy in rehabilitation. Baltimore: Williams and Wilkins, 1958.89.
  • 8Visintin M, Barbeau H. The effect of body weight support on the locomotor pattern of spastic paretic patients. Can J Neurol Sci, 1989,16: 315-325.
  • 9Pillar T. Walking reeducation with partial relief of body weight in rehabilitation of patients with locomotor disabilities. J Rehabil Res Dev, 1991,28: 47-52.
  • 10Colby SM, Kirkendall DT, Bruzga RF. Electromyographic analysis and energy expenditure of harness supported treadmill walking: implications for knee rehabilitation. Gait Posture, 1999,10:200-205.

共引文献33

同被引文献32

  • 1张立勋,颜庆,杨勇,王岚.下肢康复训练机器人AVR单片机控制系统[J].机械与电子,2004,22(10):52-55. 被引量:20
  • 2杨成,李滨,刘同慎,赵冬梅,胡凤爱.电针对脊髓损伤后星形胶质细胞增生的影响[J].中国针灸,2005,25(8):569-572. 被引量:20
  • 3丘卫红,郝元涛.脊髓损伤患者生活质量评价及其影响因素的研究[J].中华物理医学与康复杂志,2007,29(6):417-420. 被引量:5
  • 4Behrman AL, Harkema SJ. Physical rehabilitation as an agent for recovery after spinal cord injury[J]. Phys Med Rehabil Clin N Am, 2007,18(2) : 183-- 202.
  • 5Wolpaw jR. Birbaumer N,McFarland DJ, et al. Brain-computer interfaces for communication and control [J]. Clin Neurophysiol, 2002, 113(6): 767--791.
  • 6Ikeda A. Human supplementary motor area: a role in voluntary movements and its clinical significanee[J]. Rinsho Shinkelgaku, 2007, 47(1):8-20.
  • 7Muller-Putz GR, Scherer R, Pfurtscheller G, et al. EEG-based neuroprosthesis control: a step towards clinical practice[J]. Neurosci Lett, 2005, 382(1--2):169--174.
  • 8Sitaram R,Zhang H, Guan C, et al. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface[J]. Neuroimage, 2007, 34(4): 1416--1427.
  • 9Boord P,Barriskill A, Craig A, et al. Brain-computer interface-FES integration: Towards a hands-free neuroprosthesis command system [J]. Neuromodulation, 2004,7 (4): 267-276.
  • 10Muller-Putz GR, Scherer R, Pfurtscheller G, et al. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation[J]. Biomed Tech (Berl), 2006, 51(2) : 57--63.

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部