期刊文献+

流体包裹体法在岩体滑坡周界预测中的应用 被引量:3

Determination of landslide boundary by fluid inclusions
下载PDF
导出
摘要 岩体滑坡是岩体变形与破坏状态达到一定程度的结果,岩体中流体包裹体参数及其变化是反映这一状态变化的重要微观指标,研究这些参数及其变化可以确定岩体滑坡的滑动周界。以浙江省湖州市白鹤岭滑坡为例,分析16个测试样本的流体包裹体迹面特征参数(包括张开度、粗糙度系数和分布密度)和包裹体热动力学参数(包括水溶液包裹体和CO2-H2O包裹体的均一温度和流体密度),使用聚类分析与对应分析对反映流体包裹体迹面特征的样本、指标和滑坡周界的相互关系进行分析,提出分类标准和聚类方法的建议。结果表明,16个测试样本分为3类比较合适,3种样本类型与稳定区、滑坡周界、滑动区基本一致,样本、指标和滑坡周界之间具有较好的对应关系。在此基础上,提出确定岩体滑坡周界的一种新方法:流体包裹体方法。这一方法将为岩体滑坡的分析与预测提供一条具有良好前景的新方法。 Rock landslides result from rock deformations exceeding certain extent. Parameters of fluid inclusions in the rock mass are important microscopic indices of reflecting the change of states. These indices and changes may be employed to determine the boundary of landslide. The Baiheling slope, located near Huzhou City, Zejiang Province, P. R. China, was considered in using clustering and correlation analyses to reveal the relationships among 16 samples, 7 indices and the landslide boundary. The indices include the characteristic parameters (such as aperture, roughness coefficient, distribution density) of fluid inclusion planes and the thermodynamic parameters (such as homogenization temperatures, densities of aqueous and CO2-H2O solutions) of the inclusions. A clustering criterion and method were proposed. It was shown that these samples may be classified into three groups corresponding to, respectively, the stable area, the boundary and the landslide area. A new technique for determining landslide boundary with fluid inclusions was proposed, which may be employed for analyzing and forecasting rock landslides.
机构地区 上海大学
出处 《土木工程学报》 EI CSCD 北大核心 2007年第1期69-73,共5页 China Civil Engineering Journal
基金 国家自然科学基金(40572162)
关键词 流体包裹体 滑坡周界 迹面特征参数 包裹体热动力学参数 聚类分析 对应分析 fluid inclusion landslide boundary characteristic parameter thermodynamic parameters clustering analysis correspondence analysis
  • 相关文献

参考文献12

二级参考文献24

  • 1邹志晖,汪志林.锚杆在不同岩体中的工作机理[J].岩土工程学报,1993,15(6):71-79. 被引量:77
  • 2殷坤龙,晏同珍.滑坡预测及相关模型[J].岩石力学与工程学报,1996,15(1):1-8. 被引量:125
  • 3Roedder E. Fluid inclusions[J]. Reviews in Mineralogy, 1984, 12(6):644-650.
  • 4Heuze F E. High-temperature mechanical, physical and thermal properties of granitic rock-- a review[J]. Int. J. Rock Mech. Min.Sci. & Geomech. Abstr., 1983, 20(1): 3-10.
  • 5Wang H F, Bonner B P., Carlson S R, et al. Thermal stress cracking in granite[J].J. Geophys. Res., 1989, 94(12): 1745-1758.
  • 6Simmons G, Cooper H W. Thermal cycling cracks in three igneous rocks[J]. Int. J. Rock Mech. Min. Sci. & Geomech Abstr., 1978,15(2): 145-148.
  • 7Richter D, Simmons G. Thermal expansion behavior of igneous rocks[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr., 1974,11(4): 403-411.
  • 8Lin Weiren. Permanent strain of thermal expensioa end thermally induced microcracking in Inada granite[J]. J. Geophys. Res. - B,2003, in press.
  • 9Bodner R J, Binns P R, Hall D L. Synthetic fluid inclusions -IV,quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure[J]. J.Metamorphic Geol, 1989, 7(3): 229-242.
  • 10卢世宗,岩石边坡工程,1985年

共引文献119

同被引文献27

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部