期刊文献+

基于颜色分量运算与色域压缩的杂草实时检测方法 被引量:21

Real-time Detection of Weeds Based on Color Components and Bit-mask Operation
下载PDF
导出
摘要 提出了一种基于RGB分量运算和色域位屏蔽压缩的杂草实时检测方法。对杂草和作物的大量实验显示:颜色分量运算可增强目标的显示特性,而对色域的屏蔽压缩可在保证实时性的同时减弱图像噪声污染,减小干扰引起的纹理分割误差。该方法的处理时间几乎不受目标复杂度影响,可在30ms内有效分割出320×240分辨率图像中有颜色差异的不同杂草或农作物,对颜色分布波动具有较强的鲁棒性。颜色分量运算的线性组合系数可通过有监督的学习自动确定。 A real-time method to extract weed or crop populations was presented, based on RGB color components operation combined with bit-masked color reduction. Experimental results on different weed or crop populations show that color components operation can enhance the visual pattern of objects to human, and color bit-masked operation can reduce noises in image, so that the error on segmentation can be reduced. Processing time of this method costs little, no matter how complex of related scenario, with color objects be extracted within 30 ms for images of 320×240 resolution, and it's robust to variation of color or illumination on local weed or crop populations. The coefficient and operator for color components combination is determined by a supervised learning mechanism.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2007年第1期116-119,共4页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(项目编号:50545027) 浙江省高校中青年学术带头人资助项目
关键词 杂草识别 图像处理 色域位屏蔽压缩 实时检测 Weed detection, Image processing, Bit-masked color reduction, Real-time detection
  • 相关文献

参考文献7

  • 1Zhang N,Wang M,Wang N.Precision agriculture--a worldwide overview[J].Computers and Electronics in Agriculture,2002,36(2-3):113~132.
  • 2Wang N,Zhang N,Wei J,et al.Wheat field tests for an optical sensor-based,real-time,embedded,weed-detection and spray-control system[J].ASAE Paper 02-1179,2002.
  • 3Dryden I L,Scarr M R,Taylor C C.Bayesian texture segmentation of weed and crop images using reversible jump Markov chain Monte Carlo methods[J].Journal of the Royal Statistical Society:Series C (Applied Statistics),2003,52(1):31~50.
  • 4Bak T,Jakobsen H.Agricultural robotic platform with four wheel steering for weed detection[J].Biosystems Engineering,2004,87(2):125~136.
  • 5毛文华 ,王一鸣 ,张小超 ,王月青 .基于机器视觉的苗期杂草实时分割算法[J].农业机械学报,2005,36(1):83-86. 被引量:44
  • 6王月青,毛文华,王一鸣.麦田杂草的实时识别系统研究[J].农机化研究,2004,26(6):63-65. 被引量:6
  • 7Collins R T,Liu Yanxi.On-line selection of discriminative tracking features[R].Technical Report,CMU-RI-TR-03-12,the Robotics Institute,Carnegie Mellon University,Pittsburgh PA,2003.

二级参考文献9

  • 1Brivot R,Marchant J A.Segmentation of plants and weeds for a precision crop protection robot using infrared images.IEEE Proceedings on Vision,Image,and Signal Processing,1996,143(2);118-124.
  • 2Elfaki M S,Zhang N,Peterson D E.Weed detection using color machine vision.ASAE Paper 973134,1997.
  • 3Lee W S,Slaughter D C,Giles D K.Robotic weed control system for tomatoes using machine vision system and precision chemical application.ASAE Paper 973093,1997.
  • 4Meyer G E,Mehta T,Kocher M F,et a1.Textural imaging and discriminant analysis for distinguishing weeds for spot spraying.Transactions of the ASAE,1998,41(4):1189-1197.
  • 5Woebbecke D M,Meyer G E,Von Bargen K,et a1.Shape features for identifying young weeds using image analysis.Transactions of the ASAE,1995,38(1):271-281.
  • 6Yang-ChunChieh,Prasher S 0,Landry J A,et a1.Weed recognition in precision farming.ASAE Paper 993115,1999.
  • 7H.J.Olsen.Determination of row position insm- all-grain crops by analysis of video image s[J].Computers and Electronics in Agricultur- e,1995,(12):147-162.
  • 8蒋正荣.计算机杂草识别技术的研究现状[J].上海环境科学,1999,18(10):481-483. 被引量:2
  • 9相阿荣,王一鸣.利用色度法识别杂草和土壤背景物[J].中国农业大学学报,2000,5(4):98-100. 被引量:14

共引文献48

同被引文献259

引证文献21

二级引证文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部