期刊文献+

BA指数网络结构特性精确计算 被引量:1

Exact computations for structural characteristics of BA exponential networks
下载PDF
导出
摘要 度分布和平均路径长度是复杂网络的两个重要结构特性.对于随机增长的网络,其平均路径长度一般主要通过计算机模拟给出数值结果,尚无一个普适的解析计算方法.为此首先利用主方程的方法对BA随机指数网络的度分布进行解析推导,与B arabás i等的结果相比所得度分布与计算机模拟值更接近.然后对BA随机指数网络和BA确定性指数网络的平均路径长度进行解析计算,所得结果与经典的ER随机图相似,即平均路径长度以网络大小的对数形式增长.此外,对BA随机指数网络平均路径长度的模拟值与解析计算结果相吻合.最后,对BA确定性指数网络的度分布与直径进行了解析计算,并对两个网络的结构特性作了比较.比较结果表明,BA随机指数网络和BA确定性指数网络的结构性质虽然存在量上的差异,但从定性角度来说,其拓扑结构是相同的. Degree distribution and average path length are two important structural characteristics of complex networks. For randomly growing networks, there has not been a generic analytical computation technique for their average path length, which is obtained mainly by computer simulations. To solve this problem, firstly, the expression of degree distribution for the random exponential BA network is derived analytically by master-equation approach, which is more consistent with the simulations than that given by Barabási, et al. Then the emphasis switches to the computation of the average path length for both random and deterministic exponential BA networks. The obtained average path length is similar to the counterpart of ER random graph, which increases logarithmically with the network size. Also, simulations are done for the properties of the random situation, which are in good agreement with the analytical results. Furthermore, the degree distribution and diameter of the deterministic exponential BA network are found exactly. Finally, comparative research is done on the structural characteristics of the two networks. The obtained results show that the two networks have quantitatively different topological properties, while they are qualitatively similar.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2007年第1期136-140,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(重点项目7043100170571011)
关键词 复杂网络 BA网络 度分布 平均路径长度 指数网络 complex networks BA networks degree distribution average path length exponential networks
  • 相关文献

参考文献20

  • 1ALBERT R,BARABASI A L.Statistical mechanics of complex networks[J].Rev Modern Phys,2002,74(1):47-97
  • 2WANG X F.Complex networks:topology,dynamical and synchronization[J].Int J Bifurcation and Chaos,2002,22(5):885-916
  • 3吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):18-46. 被引量:250
  • 4NEWMAN M E J.The structure and function of complex networks[J].SIAM Rev,2003,45(2):167-256
  • 5ERDOS P,RENYI A.On the evolution of random graphs[J].Publ Math Inst Hungarian Acad Sci,1960,5:17-61
  • 6WATTS D J,STROGATZ S H.Collective dynamics of 'small-world' networks[J].Nature,1998,393:440-442
  • 7BARABASI A L,ALBERT R.Emergence of scaling in random networks[J].Science,1999,286:509-512
  • 8BARABASI A L,ALBERT R,JEONG H.Mean-field theory for scale-free random networks[J].Physica A,1999,272:173-187
  • 9NEWMAN M E J.Models of the small world[J].J Stat Phys,2000,101:819-841
  • 10ZHANG Z Z,RONG L L,COMELLAS F.Evolving small-world networks with geographical attachment preference[J].J Phys A:Math and Gen,2006,39(13):3253-3261

二级参考文献18

  • 1Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics,2002,74(1):47~97.
  • 2Dorogovtsev S N,Mendes J F F. Evolution of Networks[J]. Advances in Physics, 2002,51(4):1079~1187.
  • 3Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003,45(2): 167~256.
  • 4Erdos P,Rényi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hunga- rian Academy of Sciences,1960,5:17~61.
  • 5Watts D J, Strogatz S H. Collective dynamics of ′small-world′ networks[J]. Nature, 1998,393: 440~442.
  • 6Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286: 509~512.
  • 7Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A,1999, 272:173~187.
  • 8Dorogovtsev S N,Mendes J F F,Samukhin A N.Structure of growing networks with preferential linking[J].Physical Review Letters, 2000,85(21): 4633~4636.
  • 9Krapivsky P L,Redner S,Leyvraz F. Connectivity of growing random networks[J]. Physical Review Letters,2000,85(21):4629~4632.
  • 10Dorogovtsev S N, Mendes J F F, Samukhin A N. Size-dependent degree distribution of a scale-free network[J]. Physical Review E, 2001,63(6): 062101.

共引文献260

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部