期刊文献+

零渐近Lipschitz距离与有限Gromov-Hausdorff距离

原文传递
导出
摘要 给出了Burago有界距离定理在非内蕴距离情形不成立的一个例子,其论证基于R2中最优圆装填问题的经典答案.
作者 刘罗飞
出处 《中国科学(A辑)》 CSCD 北大核心 2007年第1期93-98,共6页 Science in China(Series A)
基金 湖南省自然科学基金(批准号:06JJ5009) 湖南省教育厅科研基金(批准号:00C194)资助项目
  • 相关文献

参考文献7

  • 1Cromov M. Asymptotic invariants of infinite groups. In: Niblo C, Roller M, eds. Geometric Group Theory,vol 2. London Math Soc Lecture Notes, 182.Cambridge: Cambridge Univ Press, 1993. 1-295
  • 2Burago D. Periodic metrics. Advances in Soviet Math, 1992, 9:205-210
  • 3Burago D. Periodic metrics. In: Brezis H, eds. Seminar on Dynamical Systems, Progress in Nonlinear Differential Equations. Boston: Birkhauser, 1994. 90-96
  • 4Burago D, Burago Y, Ivanov S. A Course in Metric Geometry. Providence RI: Amer Math Soc, 2001
  • 5Burago D, Ivanov S. On asymptotic volume of Finsler tori, minimal surfaces in normed spaces, and symplectic filling volume. Ann of Math, 2002, 156:891-914
  • 6Gromov M. Metric Structures for Riemannian and Non-Riemannian Spaces, Progr in Math, vol 152. Boston:Birkhauser, 1999
  • 7Conway J H, Sloane N J A. Sphere Packings, Lattices and Groups. Berlin-New York: Springer-Verlag, 1988

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部