摘要
讨论由多参数Sturm-Liouvile问题离散得到的代数联立特征值问题.首先分析了联立谱的局部性质,然后基于Rayleigh商理论给出一种求解方案,最后研究扰动理论,建立了Gerschgorin圆盘理论、Bauer-Fike型定理、Wielandt-Hoffman型定理。
The authors deal with the joint eigenvalue problem of matrices resulted from the discretion of multiparameter Sturm Liouville problem. Firstly, the local behavior of the joint spectrum of matrices is investigated, then an algorithm based on Rayeigh quotient theory is proposed, Finally, several perturbation theorems are proved.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
1996年第5期494-498,共5页
Journal of Sichuan University(Natural Science Edition)
基金
国家青年自然科学基金
关键词
实对称矩阵
特征值
联立谱
real symmtric matrices,eigenvalue problem,joint spectrum