期刊文献+

基于小波和偶合特征的多数据流压缩算法 被引量:6

A Compression Algorithm for Multi-Streams Based on Wavelets and Coincidence
下载PDF
导出
摘要 提出了基于Haar小波技术和偶合特征的多数据流压缩方法.主要研究成果包括:(1)证明了Haar小波变换服从能量守恒规律,并用于压缩数据流;(2)揭示了数据流的偶合度与变化趋势的相关性、偶合度的平移不变性及等价规律,采用特征流序列的小波系数和流能量近似表示流的趋势,达到压缩的目的;(3)提出了多尺度能量分解模型,提高了表示精度;(4)设计了多尺度能量分解压缩算法以及多尺度重构算法:(5)在真实数据集上的实验表明,新方法的压缩比是传统小波方法的2-4倍. Methods based on Haar wavelets and coincidence characteristics are proposed to compress multi-streams. The main contributions include: (1) Energy conservation law of Haar wavelets transform is proved to compress data streams. (2) The relation between the coincidence measure and trend of streams is revealed as along with the invariability under parallel shift and the equivalence law over coincidence measure to approximately express data-streams by the wavelet coefficient of the characteristic stream and its energy. (3) Multi-Scales energy decomposition model is proposed to improve the compression precision. (4) The multi-scales compression algorithm and the energy conservation reconstruction algorithm are designed. (5) Extended experiments show that the compression ratio of the new methods is 2-4 times as the traditional method.
出处 《软件学报》 EI CSCD 北大核心 2007年第2期177-184,共8页 Journal of Software
基金 国家自然科学基金Nos.60473071 10476006 国家教育部博士点专项基金No.20020610007~~
关键词 数据流 HAAR小波 偶合特征 数据压缩 层次分解 data stream Haar wavelet coincidence characteristic data compression hierarchy decompose
  • 相关文献

参考文献8

  • 1Dula S,Kim C,Shim K.XWAVE:Optimal and approximate extended wavelets for streaming data.In:Nascimento MA,Kossmann D,eds.Proc.of the 30th Int'l Conf.on Very Large Data Bases.Toronto:Morgan Kaufmann Publishers,2004.288-299.
  • 2Gilbert AC,Kotidis Y,Muthukrishnan S,Strauss MJ.One-Pass wavelet decompositions of data streams.IEEE Trans.on Knowledge and Data Engineering,2003,15(3):541-554.
  • 3Zhu YY,Shasha D.StatStream:Statistical monitoring of thousands of data streams in real time.In:Bressan S,Chaudhri AB,eds.Proc.of the 28th Int'l Conf.on Very Large Data Bases.New York:Springer-Verlag,2003.358-369.
  • 4Chen AL,Tang CJ,Yuan CA,Peng J,Hu JJ.Mining correlations between multi-streams based on haar wavelet.In:Sui GL,Vianu V,eds.Advances in Computer Science:ASIAN 2005 the 10th Asian Computing Science Conf.Kunming:Springer-Verlag,2005.270-271.
  • 5Papadimitriou S,Sun J,Faloutsos C.Streaming pattern discovery in multiple time-series.In:Bohm K,Jensen CS,Haas LM,Kersten ML,Larson PA,Ooi BC,eds.Proc.of the VLDB 2005 the 31st Int'l Conf.on Very Large Data Bases.ACM Press,2005.697-708.http://www.vldb2005.org/program/full_program.php.
  • 6Sakurai Y,Papadimitriou S,Faloutsos C.BRAID:Stream mining through group lag correlations.In:Ozcan F,ed.Proc.of the ACM SIGMOD Int'l Conf.on Management of Data.ACM Press,2005.180-201.http://cimic.rutgers.edu/sigmodpods05
  • 7Ma LS,Viglas SD,Li M,Li Q.Stream operators for querying data streams.In:Fan W,Wu Z,Yang J,eds.Proc.of the 6th Int'l Conf.on Web-Age Information Management.Berlin,Heidelberg:Springer-Verlag,2005.404-415.
  • 8Burrus CS,Gopinath RA,Guo HT.Introduction to Wavelets and Wavelet Transform.Beijing:China Machine Press,2005.1-145.

同被引文献43

  • 1李建中,郭龙江,张冬冬,王伟平.数据流上的预测聚集查询处理算法[J].软件学报,2005,16(7):1252-1261. 被引量:24
  • 2蒋鹏,黄清波,尚群立,王智,孙优贤.基于小波网络的数据压缩方法研究[J].仪器仪表学报,2005,26(12):1244-1247. 被引量:5
  • 3陈安龙,唐常杰,元昌安,彭京,胡建军.挖掘多数据流的异步偶合模式的抗噪声算法[J].软件学报,2006,17(8):1753-1763. 被引量:6
  • 4刘兵,汪卫,施伯乐.基于小波变换的序列间距离严格估算[J].计算机研究与发展,2006,43(10):1732-1737. 被引量:3
  • 5Guha S, Koudas N, Shim K. Data streams and histograms [C] //Proc of the 33rd Annual ACM Symp on Theory of Computing. New York: ACM, 2001:471-475
  • 6Gilbert A, Guha S, Indyk P, et al. Fast, small-space algorithms for approximate histogram maintenance [C]//Proc of the 34th Annual ACM Symp on Theory of Computing. New York: ACM, 2002:389-398
  • 7Gibbons P B, Matias Y. New sampling-based summary statistics for improving approximate query answers [C]// Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM, 1998:331-342
  • 8Garofalakis M, Gibbons P B. Wavelet synopses with error guarantees [C] //Proc of the 2002 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2002:476-487
  • 9Gilbert A, Kotidis Y, Muthukrishnan S, et al. One-pass wavelet decompositions of data streams [J]. IEEE Trans on Knowledge and Data Engineering, 2003, 15(3): 541-554
  • 10Cormode G, Muthukrishnan S. An improved data stream summary: The count-min sketch and its applications [J]. Journal of Algorithms, 2005, 55(1): 58-75

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部