期刊文献+

发散冷却最小冷却介质注射量的数值研究 被引量:1

A numerical investigation of the minimum coolant injection rate for transpiration cooling
下载PDF
导出
摘要 充分发挥材料本身的抗高温能力,以最小的冷却介质注射量,确保推进器不被烧蚀是发散冷却系统的设计目标.本文用一维可压缩、非稳态、局部非热平衡模型,数值研究了瞬态冷却过程及最小冷却介质注射量的依赖参数.数值研究表明:研究瞬态的冷却过程十分重要,因为尽管当冷却过程达到稳态以后热端温度在烧蚀点以下,但在进入稳态之前可能已经发生烧蚀;多孔介质骨架材料的初始温度越高、特征尺寸越大,冷却介质需要量越大;在仅考虑冷却效果的前提下,孔隙率越大,冷却介质需要量越大;相反,骨架材料导热系数越高,冷却介质需要量越小. An advanced design of transpiration cooling system is not only to ensure thermal protection of propulsion system from ablation, but it also should utilize the full temperature potential of porous matrix. A numerical investigation of transient processes of transpiration cooling and the control parameters of the lowest limit of the coolant mass flow rate is conducted with the help of a compressible, unsteady and local non-thermal equilibrium model. The numerical investigation presents that it is important to study transient cooling process, because the porous matrix could be ablated before the cooling process reaches a steady state, though the steady temperature may be lower than the melting point. A higher initial temperature and a larger characteristic size of the porous matrix will result in an increase in the minimum coolant injection rate to prevent ablation of the porous matrix. From the view point of cooling effect,a higher porosity corresponds to a larger coolant mass flow rate. Contrarily, a higher thermal conductivity.of the porous matrix corresponds to a lower demand for the minimum coolant flow rate.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2007年第2期222-227,共6页 Journal of Aerospace Power
基金 国家自然科学基金重大研究计划资助(90305006) 安徽省教育厅自然科学基金重点项目资助(2004kj365zd) 国家教委留学人员回国基金资助
关键词 航空 航天推进系统 发散冷却 冷却介质 最小注射量 aerospace propulsion system transpiration cooling coolant minimum injection rate
  • 相关文献

参考文献11

  • 1Choi S H,Scotti S J,Song K D,et al.Transpiration cooling of a scram jet engine combustion chamber[R].The 32th AIAA Thermo-physics Conference,Atlanta,Georgia,1997,AIAA 97-2576.
  • 2Glass D E,Dilley A D.Numerical analysis of convection/transpiration cooling[R].NASA/TM-1999-209828.
  • 3Landis J A,Bowman J W.Numerical study of a transpiration cooled rocket nozzle[R].AIAA Meeting 1996 Paper 96-2580.
  • 4Lacy B P,Varghese P L,Wilson D E.Unsteady effects of dissociative cooling under high-stagnation-point heat loads[J].Journal of Spacecraft and Rockets,1998,35(5):633-638.
  • 5Lacy B P,Wilson D E,Varghese P L.Dissociative cooling effect on stagnation heat transfer of gas mixture injection[J].Journal of Spacecraft and Rockets,1995,32(5):777-782.
  • 6Wang J H,Han X S.Numerical investigation of transpiration and ablation cooling[J].Journal of Heat and Mass Transfer,2007,43(1):275-284.
  • 7Greuel D,Herbertz A,Haidn O J,et al.Transpiration cooling applied to C/C liners of cryogenic liquid rocket engines[R].AIAA /ASME /SEA/ASEE/JPC Conference and Exhibit,11-14 July 2004,Fort Lauderdale,Florida 2004-3682.
  • 8Amiri A,Vafai K.Analysis of dispersion effects and non-thermal equilibrium non-darcian variable porosity,incompressible flow through porous media[J].Int.Journal of Heat Mass Transfer,1994,37:939-954.
  • 9Amiri A,Vafai K.Transient analysis of incompressible flow through a packed bed[J].Int.Journal of Heat Mass Transfer,1998,41:4259-4279.
  • 10Von Wolfersdorfvon J.Effect of coolant side heat transfer on transpiration cooling[J].Journal of Heat and Mass Transfer,2005,41:327-337.

二级参考文献16

  • 1Alazmi B,Vafai K.Constant Wall Heat Flux Boundary Conditions in Porous Media under Local Thermal Non-equilibrium Conditions[J].Int.J.Heat Mass Tran.,2002,45:3071 ~3087.
  • 2Polezhaev Y V,Seliverstov E M.A Universal Model of Heat Transfer in Systems with Penetration Cooling[J].High Temperature,2002,40:856~ 864.
  • 3Amiri A,Vafai K,Kuzay T M.Effects of Boundary Conditions on Non Darcian Heat Transfer Through Porous Media and Experimental Comparisons[J].Numerical Heat Transfer,1995,Part A 27:651~664.
  • 4Jiang P X,Ren Z P.Numerical Investigation of Forced Convection Heat Transfer in Porous Media Using a Thermal NonEquilibrium Model[J].Int.J.Heat Fluid Flow,2001,22:102~110.
  • 5Vafai K,Kim S J.Forced Convection in a Channel Filled with a Porous Medium; An Exact Solution[J].ASME J.Heat Transfer,1989,111:1103~ 1106.
  • 6Quintard M,Whitaker S.Local Thermal Equilibrium for Transient Heat Conduction; Theory and Comparison with Numerical Experiments[J].Int.J.Heat Mass Tran.,1995,38:2779~2796.
  • 7Vafai K,Sozen M.Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed[J].ASME J.Heat Transfer,1990,96:690~699.
  • 8Nield D A.Effects of Local Thermal Non-Equilibrium in Steady Convective Processes in a Saturated Porous Medium;Forced Convection in a Channel[J].J.Porous Media,1998,1:181~ 186.
  • 9Burch D M,Allen R W,Peavy B A.Transient Temperature Distributions within Porous Slabs Subjected to Sudden Transpiration Heating[J].ASME J.Heat Transfer,1976,5:221~225.
  • 10Green L J R,Calif D.Gas Cooling of a Porous Heat Source[J].Journal of Applied Mechanics,1952,6:173 ~ 178.

共引文献2

同被引文献14

  • 1孟丽燕,姜培学,蒋方帅,江世臣,任泽霈.孔隙及热流的非均匀性对发散冷却的影响[J].清华大学学报(自然科学版),2006,46(2):230-233. 被引量:3
  • 2Ford B. Ellipsoidal bubble diffusion in a turbulent shear layer[J]. International Journal of Multiphase Flow, 2000, 26(3) : 503-516.
  • 3Glass D E, Arthur D. Numerical analysis of convection transpiration cooling[R]. NASA/TM-1999-209828,1999.
  • 4Kays W M, Crawford M E. Convective heat and mass transfer[M]. 2nd ed. New York: McGraw Hill, 1980.
  • 5Choi S H,Scotti S J,Song K D, et al. Transpiration cooling of a scramjet engine combustion chamber[R]. AIAA 97- 2576,1997.
  • 6Landis J A,Bowman J W. Numerical study of a transpira- tion cooled rocket nozzle[R]. AIAA 96-2580,1996.
  • 7Lacy B P,Wilson D E, Varghese P L. Dissociative cooling effect on stagnation heat transfer of gas mixture injection [J]. Journal of Spacecraft and Rockets, 1995,32(5) : 777-782.
  • 8王补宣.工程传热与传质[M].北京:科学出版社,2002.
  • 9杨强生,蒲保荣.高等传热传质学[M].上海学出版社,1996.
  • 10陶智,徐国强.航空发动机燃烧学[M].北京天大学出版社,2005.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部