期刊文献+

气相中烯丙基负离子与N_2O的反应机理 被引量:4

Gas-phase Reaction Mechanism of Allyl Anion with N_2O
下载PDF
导出
摘要 采用二阶微扰理论的MP2/6-31G(d,p)方法对气相中烯丙基负离子与N2O的反应机理进行了理论计算研究,并在相同基组下进一步用CCSD(T)方法进行了单点能的校正.计算结果表明,该反应存在三条反应通道,产物分别为cis-CH2CHCNN-+H2O,trans-CH2CHCNN-+H2O和CH2CCH-+N2+H2O,其中生成cis-CH2CHCNN-和trans-CH2CHCNN-的两条通道为相互竞争的主反应通道,计算结果与实验相吻合.同时利用传统的过渡态理论,计算了各反应通道在298K时,速控步骤的反应速率常数k(T). The gas-phase reaction mechanism of allyl anion with N2O was investigated at the MP216-31G(d,p) level of the MP2 theory. The single-point energies have also been refined at the CCSD (T)/6-31G (d,p) level to get more accurate energies using the MP2/6-31G(d,p) optimized geometries. The computational results indicated that the reaction involved three reaction pathways to produce cis-vinyl-diazomethyl anion, trans-vinyl-diazomethyl anion, and allenyl anion. The major competition channels of the reaction which produced cis-vinyl-diazomethyl anion, and transvinyl-diazomethyl anion all involved two steps of α-H migration. Furthermore, all these rate-determing steps are the second α-H migration and the barriers are 89.79 and 97.93 kJ·mol^-1, respectively. Distinctly, allenyl anion was formed through one α-H and one β-H migration and its rate-determing step was the rotation of the N^10-O^11 and N^9-C^3 bonds around N--N bond. The rate coefficients of the rate-determining step of all the reaction channels have also been calculated using statistic thermodynamics and conventional transition state theory at 298 K.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2007年第2期217-222,共6页 Acta Physico-Chimica Sinica
基金 甘肃省自然科学基金(329051-A25-021)资助项目
关键词 烯丙基负离子 反应机理 二阶微扰理论(MP2) 过渡态理论 Allyl anion Reaction mechanism Second-order Moller-Plesset perturbation theory (MP2) Transition state theory
  • 相关文献

参考文献19

  • 1Albritton, D. L.; Aucamp, P. J.; Megie, G. Scientific assessment of ozone depletion: 1998, World Meteorological Organization(WMO/UNEP), WMO Global Ozone Research and Monitoring project-report, No.44. Geneva in Switzerland: World Meteorological Organization, 1999
  • 2Pérez-Ramíez, J.; Kapteijn, F.; Schoffel, K.; Moulijn, J. A. Appl.Catal. B, 2003, 44(2): 117
  • 3Groman, P. M.; Gold, A. J.; Addy, K. Chemosphere-Global Change Science, 2000, 2(3-4): 291
  • 4Hui, C. H.; So, M. K.; Lee, C. M.; Chan, G. Y. S. Chemosphere,2003, 52:1547
  • 5Bierbaum, V. M.; Depuy, C. H.; Shapiro, R. H. J. Am. Chem. Soc.,1977, 99:5800
  • 6Depuy, C. H. Int. J. Mass Spectrom., 2000, 200:79
  • 7Gronert, S. Chem. Rev., 2001, 101:329
  • 8Depuy, C. H.; Kass, S. R. J. Org. Chem., 1985, 50:2874
  • 9Depuy, C. H.; Beierbaum, V. B.; Damrauer, R.; Soderquist, J. A.J. Am. Chem. Soc., 1985, 107:3385
  • 10Kass, S. R.; Filley, J.; van Doren, J. M.; Depuy, C. H. J. Am. Chem.Soc., 1986, 108:2849

同被引文献217

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部