期刊文献+

Rayleigh and Hyper-Rayleigh Scatterings from the Nanometer SnO_2 Particle in Solution 被引量:1

Rayleigh and Hyper-Rayleigh Scatterings from the Nanometer SnO_2 Particle in Solution
下载PDF
导出
摘要 Rayleigh and Hyper-Rayleigh scatterings(HRS) from the nano-particle SnO2 were measured. It is found that as the concentration of the colloidal SnO2 or radiation power increases, the first- and second-order polarizabilities decrease. The radiation power dependencies of the first- and second-order polarizabilities show two domains: in high radiation power domain, the first- and second-order polarizabilities are approximately constant, in low radiation power domain, the first- and second-order polarizabilities increase sharply and become sensitive to the radiation power. The behavior of the concentration dependencies of the first- and second-order polarizabilities of colloidal SnO2 particles is similar to that of the radiation power dependence. A detailed mechanism explaining these phenomena has been discussed. Rayleigh and Hyper-Rayleigh scatterings (HRS) from the nano-particle SnO2 were measured. It is found that as the concentration of the colloidal SnO2 or radiation power increases, the fast- and second-order polarizabilities decrease. The radiation power dependencies of the fast- and second-order polarizabilities show two domains: in high radiation power domain, the first- and second-order polarizabilities are approximately constant, in low radiation power domain, the first- and second-order polarizabilities increase sharply and become sensitive to the radiation power. The behavior of the concentration dependencies of the fast- and second-order polarizabilities of colloidal SnO2 particles is similar to that of the radiation power dependence. A detailed mechanism explaining these phenomena has been discussed.
作者 XU Wei-Xing
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2007年第2期242-246,共5页 Acta Physico-Chimica Sinica
关键词 Hyper-Rayleigh NANOPARTICLE SNO2 Hyper-Rayleigh Nanoparticle SnO2
分类号 O [理学]
  • 相关文献

参考文献16

  • 1Xu, W. X.; Schierbaum, K. D.; Goepel, W. Int. J. Quan. Chem.,1997, 62(4): 427
  • 2Tachibana, Y.; Moser, J. E.; Graetzel, M.; Klug, D. R.; Durrant, J.R. J. Phys. Chem., 1996, 100:20056
  • 3Zhang, Y.; Wang, X.; Ma, M.; Fu, D. G.; Gu, N.; Lu, Z. H.; Xu, J.;Xu, L.; Chen, K. J. J. Colloid and Interface Sci., 2003, 266(2): 377
  • 4Sahyun, M. R. V. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(4): 3149
  • 5Kang, M.; Choung, S. J., Park, J. Y. Catalysis Today, 2003, 87(1-4): 87
  • 6He, L. P.; Mai, Y. W.; Chen, Z. Z. Materials Sci. and Eng. A, 2004,367(1-2): 51
  • 7Clays, K.; Persoons, A. Rev. Sci. Instrum., 1994, 65:2190
  • 8Wang, H.; Yan, E. C. Y.; Borguet, E.; Eisenthal, K. B. Chem. Phys.Lett., 1996, 259:15
  • 9Xu, W. X. Optics and Laser Technology, 2002, 34:187
  • 10Xu, W. X. Optics and Laser Technology, 2004, 36:155

同被引文献14

  • 1Clays, K.; Persoon, A. Modem nonlinear optics, part 3, advanced. chemical physics. London, Methuen, New York: John Wiley & Sons, Inc. 1993
  • 2Prasad, P. N.; Williams, D. J. Introduction to nonlinear optical effects in molecule & polymers. New York: Wiley-Interscience Publication, Wiley, 1991
  • 3Kielich, S.; Lalarme, J. R.; Martin, F. B. Phys. Rev. Lett., 2007, 26:1298
  • 4Yaliraki, S. N.; Silbey, R. J. J. Chem. Phys., 1999, 111:1561
  • 5Clays, K.; Persoon, A. Phys. Rev. Lett., 1991, 66:2980
  • 6Clays, K.; Persoon, A. Rev. Sci. Instrum., 1992, 63:3285
  • 7Yuzawa, T. Appl. Spectro., 1994, 48:684
  • 8Hsiung, H.; Shi, L. P.; Shen, Y. R. Phys. Rev. A, 1984, 30:1453
  • 9Noelting, B. J. Theor. Biol., 1995, 175:191
  • 10Noelting, B. J. Phys. Chem. B, 1998, 102:7506

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部