期刊文献+

一种新的频繁项集挖掘算法 被引量:8

Novel Frequent Itemset Mining Algorithm
下载PDF
导出
摘要 首先对传统集合操作进行了扩展,提出基于扩展集合操作的最大频繁项集生成算法FIS-ES,并从理论和实验上对算法的复杂度进行了详细的分析。实验表明,在最小支持度较小的情况下,FIS-ES比Apriori算法具有更快的挖掘速度、更少的空间占用等优点,与Apriori有很好的互补性。 The traditional set operator has been extended, and then the FIS-ES algorithm is proposed on the basis of extended set operators. Experiments show that the new algorithm has advantages such as more efficient and less space used in the lower minimum support condition. It is a good complementarity for Apriori algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2007年第2期17-19,62,共4页 Application Research of Computers
基金 国家自然科学基金重大资助项目(90104005)
关键词 扩展集合操作 关联规则 FIS-ES算法 Extended Set Operator Association Rule FIS-ES Algorithm
  • 相关文献

参考文献8

  • 1Agrawal R,Imielinski T,Swami A.Mining Association Rules Between Sets of Items in Large Database[C].Washington DC:Proc.of ACM-SIGMOD on Management of Data,1993.207-216.
  • 2Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules[C].Santiago,Chile:Proc.of VLDB,1994.487-499.
  • 3Han J,Cai Y,Cercone N.Data-driven Discovery of Quantitative Rules in Relational Databases[J].IEEE Transaction on Knowledge and Data Engineering,1993,5(1):29-40.
  • 4Han J,Pei J,Yin Y.Mining Frequent Patterns without Candidate Generation:A Frequent-Pattern Tree Approach[J].Data Mining and Knowledge Discovery,2004,8(1):53-87.
  • 5Park M,Chen M,Yu P.An Effective Hash Based Algorithm for Mining Association Rules[C].Chicago,IL:Proc.of ACM SIGMOD,1995.175-186.
  • 6Pasquier N,Bastide Y,Taouil R,et al.Efficient Mining for Association Rules Using Closed Itemset Lattices[J].Information Systems,1999,24(1):25-46.
  • 7HANJ KAMBERM.DATA MINING concepts and techniques[M].北京:高等教育出版社,2001..
  • 8毛国君,刘椿年.基于项目序列集操作的关联规则挖掘算法[J].计算机学报,2002,25(4):417-422. 被引量:37

二级参考文献1

共引文献40

同被引文献83

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部