期刊文献+

城市交通拥挤问题的探讨(英文) 被引量:1

A Discussion of the Traffic Jam Problem in Cities
下载PDF
导出
摘要 本文探讨了城市交通拥挤问题的解决方法.根据道路的拥挤状况引入畅通度的概念,量化了道路的拥挤程度.在道路的物理距离的基础上加入畅通因素把它转化为一种新的距离,这样使原有寻找最短路径的算法能继续适用.同时本文详细介绍了公路网络中信息的存储方法:Coordinate Storage(COO),Compressed Sparse Row(CSR),Compressed SparseColumn(CSC),Block Sparse Row,以及最短路径的搜索算法:Dijkstra算法和Bellman-ford算法,同时给出了Dijkstra算法步骤和它的最新改进算法. This paper discusses the method of solving the problem of traffic jam in cities. According to the status of jam we introduce a concept called expediency, making the status of expediency measurable ,menawhile,we add the expediency factor into the physical distance and get a new kind of distance so that the algorithm searching for shortest path can still be suitable. Besides this paper talks about the storage methods: Coordinate Storage (COO), Compressed Sparse Row (CSR),Compressed Sparse Column (CSC),Block Sparse Row,and the shortest path algorithm: Dijkstra algorithm and Bellman-ford algorithm, then we give the steps of dijkstra algorithm and its latest speed-up algorithm.
出处 《应用数学》 CSCD 北大核心 2007年第1期31-36,共6页 Mathematica Applicata
关键词 交通拥挤 畅通度 最短路径 Traffic jam Expediency Shortest path
  • 相关文献

参考文献6

  • 1Ankit J,Goharian N.Comparative Analysis of Sparse Matrix Algorithms for Information Retrival[M].Illinois:Information Rerival Laboratory Illinois Institute of Technology Chicago,1960.
  • 2Dijkstra E W.A note on two problems in connexion with graph[J].Numerische Mathematik,1959,1:269~271.
  • 3Bellman E.On a routing problem[J].Quarterly of Applied Mathematics,1958,16:87~90.
  • 4Dreyfus S.Appraisal of some shortest path algorithms[J].Operations Research,1969,7:395~412.
  • 5Panl E B.Dictionary of Algorithms and Data Structures[M].USA:Brigham Young University,1983.
  • 6Wagner D,Willhalm T.Geometric Speed-up Techniques for Finding Shortes Paths in Large Sparse Graphs[J].LNCS 2832,ESA 2003:776~787.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部