摘要
本文探讨了城市交通拥挤问题的解决方法.根据道路的拥挤状况引入畅通度的概念,量化了道路的拥挤程度.在道路的物理距离的基础上加入畅通因素把它转化为一种新的距离,这样使原有寻找最短路径的算法能继续适用.同时本文详细介绍了公路网络中信息的存储方法:Coordinate Storage(COO),Compressed Sparse Row(CSR),Compressed SparseColumn(CSC),Block Sparse Row,以及最短路径的搜索算法:Dijkstra算法和Bellman-ford算法,同时给出了Dijkstra算法步骤和它的最新改进算法.
This paper discusses the method of solving the problem of traffic jam in cities. According to the status of jam we introduce a concept called expediency, making the status of expediency measurable ,menawhile,we add the expediency factor into the physical distance and get a new kind of distance so that the algorithm searching for shortest path can still be suitable. Besides this paper talks about the storage methods: Coordinate Storage (COO), Compressed Sparse Row (CSR),Compressed Sparse Column (CSC),Block Sparse Row,and the shortest path algorithm: Dijkstra algorithm and Bellman-ford algorithm, then we give the steps of dijkstra algorithm and its latest speed-up algorithm.
出处
《应用数学》
CSCD
北大核心
2007年第1期31-36,共6页
Mathematica Applicata