期刊文献+

广义次指数族的卷积根的封闭性 被引量:4

The Closure of an Extensive Subexponential Distribution Class under Convolution Roots
下载PDF
导出
摘要 设F是支撑在(-∞,∞)上的分布函数.v是一个取有限个整数值的非负随机变量,F*v为F的v重卷积.在一定条件下,本文得到了如下结论:对任意0≤γ<∞,F*v∈S(γ)F∈S(γ).特别地,若v≡n,n≥2,本文得到了支撑在(-∞,∞)上的S(γ)族的卷积根的封闭性.上述所得结果推广了[2]对应结果. Let F on (- ∞,∞) be a distribution function and F#v is the v- fold convolution of F, where v is a nonnegative random variable taking only a finite number of integer-values. Under certain conditions,the paper obtains the following result.for any 0≤ y∞,F#v S(y)→←F∈S(7). Particularly ,if v≡n ,n≥ 2, we give the closure of S(7) under convolution roots supported on (- ∞,∞). The above obtained results extend the corresponding results of E23.
出处 《应用数学》 CSCD 北大核心 2007年第1期47-52,共6页 Mathematica Applicata
基金 国家自然科学基金(10271087) 苏州科技学院引进人员科研启动费(Z912) 院科研基金.
关键词 S(y)族 卷积根 封闭性 Distribution class of S (y) Convolution roots Closure
  • 相关文献

参考文献9

  • 1Embrechts P,Goldie C M,Veraverbeke N.Subexponentiality and infinite divisibility[J].Z Wahrscheinlichkeitsth,1979,49:335~347.
  • 2Embrechts P,Goldie C M.On convolution tails[J].Stoch.Process.Appl.,1982,13:263~278.
  • 3Wang Y B,Cheng D Y,Wang K Y.The closure of local subexponential distribution class under convolution roots with applications to the compound Poisson process[J].J.Appl.Probab.,2005,42(4):1194~1203.
  • 4Shimura T,Watanabe T.Infinite divisibility and generalized subexponentiality[J].Bernoulli,2005,11(3):445~469.
  • 5Pakes A.Convolution equivalence and infinite divisibility[J].J.Appl.Prob.,2004,41:407~424.
  • 6Cline D B H.Convolutions of distributions with exponential and subexponential tails[J].J.Aust.Math.Soc.,1987,43(A):347~365.
  • 7Klüppelberg C.Subexponential distributions and characterisations of related classes[J].Probab.Theory Related Fields,1989,82:259~269.
  • 8Asmussen S,Foss S,Korshunov D.Asymptotics for sums of random variables with local subexponential behavior[J].J.Theor.Probab.,2003,16:489~518.
  • 9Embrechts P,Goldie C M.On closure and factorization properties of subexponential tails[J].J.Aust.Math.Soc.Ser.,1980,29(A):243~256.

同被引文献21

  • 1Yue Bao WANG,Kai Yong WANG,Dong Ya CHENG.Precise Large Deviations for Sums of Negatively Associated Random Variables with Common Dominatedly Varying Tails[J].Acta Mathematica Sinica,English Series,2006,22(6):1725-1734. 被引量:19
  • 2林建希.关于次指数分布及其相关类的一个性质[J].厦门大学学报(自然科学版),2007,46(4):461-463. 被引量:1
  • 3Pakes, A. G.. Convolution equivalence and infinite divisibility [J]. J. AppL Probab, 2004, 41: 407-424.
  • 4Tang, Q.. On convolution equivalence with applications [J]. Bernoulli, 2006, 12: 535-549.
  • 5Watanabe, T.. Convolution equivalence and distributions of random sums[J]. Probab.Theory Relat. Fields, 2008, 142: 36"7-397.
  • 6Borovkov, A. A.. On subexponential distributions and asymptotics of the distribution of the maximum of sequential sums [J]. Siberian Math, 2002, 43: 995-1022.
  • 7Cline, D. 13. H.. Convolutions of distributions with exponential and subexponential tails[J]. Aust. Math. Soc. Set A, 1987, 43: 347-365.
  • 8Embrechts, P.Goldie, C. M.. On closure and factorization properties of subexponential tails[J]. Aust. Math. Soc. Ser A, 1980, 29: 243-256.
  • 9Embrechts, P., Goldie, C. M. and Veraverbeke, N. Subexponentiality and infinite divisibility[J]. Z. Wahr. Verw. Gebiete, 1979, 49: 335-347.
  • 10Foss, S. and Korshunov, D. Lower limits and equivalences for convolution tails[J]. Ann. Probab., 2007, 35: 366-383.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部