期刊文献+

非线性椭圆障碍问题弱解的内部正则性(英文) 被引量:2

Interior Regularity of Weak Solutions to Nonlinear Elliptic Obstacle Problems
下载PDF
导出
摘要 我们讨论具有C1,β障碍函数的非线性障碍问题弱解的内部正则性,得到了C1lo,cα的正则性结果. We study the interior regularity of weak solutions to a nonlinear obstacle problem with C1β obstacle function,and obtain the Cloc^1α regularity.
出处 《应用数学》 CSCD 北大核心 2007年第1期171-182,共12页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of Hebei University,the NationalNatural Science Foundation of China(10471039),the Zhejiang Provincial Natural Science Foundationof China(M103087)
关键词 内部正则性 弱解 障碍问题 Interior regularity Weak solution Obstacle problem
  • 相关文献

参考文献10

  • 1Michael J H,Ziemer P.Interior regularity for solutions to obstacle problems[J].Nonlinear Anal.,1986,10(12):1427~1448.
  • 2Heinonen J,Kilpelainen T.On the wiener criterion and quasilinear obstacle problems[J].Trans.of the American Math.Soc.,1988,310(1):239~255.
  • 3Jun Mu.Higher regularity of the solution to the P-Laplace obstacle problem[J].J.of Diff.Equ.,1992,95:370~384.
  • 4Choe H J,Lewis J L.On the obstacle problem for quasilinear elliptic equations of p-Laplacian type[J].SIAM J.Math.Anal.,1991,22(3):623~638.
  • 5Tan Z,Yan Z Q.Regularity of weak solutions to some degenerate elliptic equations and obstacle problems[J].Northeastern Math.J.,1993,9(2):143~156.
  • 6Reshetnyak Yu G.Space Mapping with Bounded Distortion[M].Providence,Rhode,Island:American Mathematical Society Press,1989.
  • 7Lieberman G M.The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations[J].Commun.in P.D.E.,1991,16(23):311~361.
  • 8Heinonen J,Kilpelanen T,Martio O.Nonlinear potential theory of degenerate elliptic equations[J].Oxford New York Tokyo:Clarendon Press,1993.
  • 9Evans L C.Partial Differential Equations[M].Providence,Rhode Island:American Mathematical Society Press,1998.
  • 10Giaquinta M.Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems[M].Princeton,New Jersey:Princeton University Press,1983.

同被引文献14

  • 1Ruzicka M. Electrorheological fluids: modeling and mathematical theory[C]//Lecture Notes in Mathe- matics 1748. Berlin : Springer-Verlag, 2000.
  • 2C HEN Y unmei,Levine S, Rao M. Variable exponent,linear growth functionals in image restoration[J]. SIAM J. Appl. Math., 2006,66 (4) : 1383-1406.
  • 3Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory[J]. Math. USSR Izvestiya, 1987,29 :33-36.
  • 4FAN Xianling. Solutions for p(x) -Laplacian Dirichlet problems with singular coecients[j]. J. Math. A- nal. Appl. , 2005,312 : 464-477.
  • 5Diening L. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev space L^p(*) and W^k,p(*) [J]. Math. Naehr. , 2004,268 : 31-43.
  • 6ZHANG Qihu. Boundary blow-up solutions to p(x) -Laplacian equations with exponential nonlinearities [J]. J. Inequal. Appl. , 2008 (2008), Article ID: 279306.
  • 7GAO Hongya, QIAO Jinjing, CHU Yuming. Local regularity and local boundedness results for very weak solutions of obstacle problems [J]. Journal of Inequalities and Applications, Volume 2010, Article ID 878769,12 pages,doi: 10. 1155/2010/878769.
  • 8Benilan Ph, Boccardo L, Gallouet T, Gariepy R, Pierre M, Vazquez J L. An L^1 -theory of existence and u- niqueness of solutions of nonlinear elliptic equations[J]. Ann. Sc. Norm. Super. Pisa, Cl. Sci. , 1995,22: 241-273.
  • 9Sanchon M, Urbano J M. Entropy solutions for the p(x) -Laplace equation[J]. Trans. Amer. Math. Soc., 2009,361 : 6387-6405.
  • 10FAN Xianling, ZHAO Dun. On the space L^p(x) and W^m,p(x) [J]. J. Math. Anal. Appl. , 2001,263 : 424-446.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部