摘要
本文运用地理加权回归(geographical weighted regression,GWR)方法,对1993-2002年期间中国省域R&D知识溢出的空间非稳定性进行了实证分析。传统的OLS只是对参数进行“平均”或“全局”估计,不能反映参数在不同空间的空间非稳定性;GWR是一种简单、有效的技术,可以反映参数在不同空间的空间非稳定性。研究结果发现:在对R&D知识生产进行参数估计时,GWR模型与OLS模型有显著的差异;R&D知识生产的不同要素存在空间变异。
The present paper employs technique of geographical weighted regression (GWR) to make an empirical study on China's R&D knowledge spillovers at provincial level. Conventional regression analysis can only produce ‘average’ and ‘global ’ parameter estimates rather than ‘local ’ parameter estimates which vary over space in some spatial systems. Geographically weighted regression (GWR), on the other hand, is a simple, but useful nonstationarity. Results show that there is new technique for the analysis of spatial significant difference between OLS and GWR in estimating the parameters of R&D knowledge production, and that the relationships between level of regional innovation activities and various factors show considerable spatial variability.
出处
《数量经济技术经济研究》
CSSCI
北大核心
2007年第2期145-153,共9页
Journal of Quantitative & Technological Economics
关键词
知识溢出
区域创新
GWR
Knowledge Spillover
Regional Innovation
GWR