摘要
针对基于参数模型的普通PID控制对模型精确性要求较高,只能有效控制一般纯滞后对象,而不适用于复杂大时滞系统对象的控制。这里尝试对普通PID控制器添加单神经元自适应PSD算法,并加入专家经验对可调参数进行在线寻优、自校正。在Smartpro系统的ConMaker组态软件上编写了该控制器程序,并对二阶大时滞对象进行仿真实验。实验分析了单神经元PSD控制器参数对控制性能的影响,及与普通PID控制器作比较。结果表明此控制器对于二阶大时滞对象具有较强的自适应性和鲁棒性。
Because the normal PID Control System based on the parameter model needs high acurate model, it can only control the normal time delay system effectively and its efficiency of controlling the complex large scale timedelay system is low. So a single - neuron PSD arithmetic is added into the normal PID controller, in which the expert experience is used to adjust neuron' s variable parameters on - line. This kind of controller is designed on the ConMaker software of the Smartpro system. The experiment analizes the influence on the two - step delay system produced by changing the single - neuron PSD controller' s parameter. Moreover, it is compared with the normal PID controller. The simulation results show that the controller has high adaptability and robustness.
出处
《计算机仿真》
CSCD
2007年第2期137-140,共4页
Computer Simulation
关键词
复杂大时滞系统
单神经元
先进控制
Complex large scale time delay system
Single - neuron
Advanced control