摘要
设F={f1,…,fM}是一个次数大于1的多项式集合。我们证明了在一定条件下Fatou集F(F)没有游荡区域。更确切地说,对于F(F)的每一个分支Ω,存在整数m≥0,n≥0。
Let F={f 1,…,f M} be a set of polynomials with degree more than one. We prove that the Fatou set F(F) has no wandering domains under some conditions. More precisely, for every component Ω of F(F) , there exist integers m≥0,n≥0,m≠n and a σ∈∑ M such that W m σ(Ω) and W n σ(Ω) stay in the same component of F(F ).
出处
《纯粹数学与应用数学》
CSCD
1996年第2期23-27,共5页
Pure and Applied Mathematics