期刊文献+

纳米氧化锌粒子分散性对其吸收光谱的影响 被引量:6

Influence of Polydispersity on the Absorbance Spectra of ZnO Nanoparticles
下载PDF
导出
摘要 在异丙醇中用氢氧化钠分别与醋酸锌及溴化锌反应制备了纳米氧化锌粒子.分别用高分辨率电子显微镜及原位紫外吸收光谱测定了粒子大小及分布.实验结果表明,粒子的增大服从LSW(Lifshitz-Slyozov-Wagner)模型,即粒子体积随老化时间线性增大;但粒子的分布不符合LSW模型,这与他人的研究结果不一致.用计算机数值模拟确定了纳米氧化锌分布函数对其紫外吸收光谱的影响,发现在紫外吸收边附近光谱发生弯曲,且随粒子分布标准方差(SD)的增大,弯曲更显著,引起紫外吸收光谱红移,这将导致用吸收边计算氧化锌粒子大小时产生正误差.就单分散(SD/■<5%,■是粒子的平均半径)纳米氧化锌而言,这种正误差仅为2%,但当粒子分布的SD/■达到15%时,所产生的正误差可高达15.1%. Influence of polydispersity on UV absorption spectra of ZnO nanoparticles, which were prepared from zinc bromide and sodium hydroxide as well as zinc acetate and sodium hydroxide in 2-propanol, had been studied. The particle size was measured with UV absorption spectrometry in-situ and high resolution transmission electron microscope (HRTEM). The growth kinetics ofZnO nanoparticles was in agreement with LSW(Lifshitz-Slyozov-Wagner) model for coarsening where the particle volume was proportional to aging time. However, the particle size distribution was found to be inconsistent with the LSW model, which has been reported previously for other systems. Computer numerical calculation was used to determine the effect of the distribution function on the UV absorption spectra of ZnO suspension. It was found that absorption'spectra bent near the UV absorption edge and shifted with the increase of standard deviation (SD) of normal distribution function, which can lead to an over-estimation of the particle size from UV spectra. For monodispersed ZnO suspensions (SD√γ 〈 5%), the over-estimation of particle size is only about 2%. ff SD√γ of the particle is 15%, the over-estimation can be as high as 15.1%.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2007年第1期59-63,共5页 Acta Physico-Chimica Sinica
关键词 氧化锌 纳米粒子 紫外吸收 吸收边 能隙 数值模拟 ZnO Nanoparticles UV absorption Absorption edge Band gap Numerical imitation
  • 相关文献

参考文献39

二级参考文献20

  • 1Aizpurua,J.;Hanarp,P.;Sutherland,D.S.;Kall,M.;Bryant,G.W.;Garcia de Abajo,F.J.Physical Review Letters,2003,90:57401.
  • 2Li,F.;He,J.;Zhou,W.;Wiley,J.B.Journal of American Chemical Society,2003,125:16166.
  • 3Li,F.;Xu,L.;Zhou,W.L.;He,J.;Banghman,R.H.;Zakhidov,A.A.;Wiley,J.B.Advanced Mater.,2002,14:1528.
  • 4Dai,Y.;Zhang,Y.;Wang,Z.L.Solid State Communications,2003,126:629.
  • 5Dai,Y.;Zhang,Y.;Li,Q.K.;Nan,C.W.Chemical Physics Letters,2002,358:83.
  • 6Dai,Y.;Zhang,Y.;Bai,Y.Q.;Wang,Z.L.Chemical Physics Letters,2003,375:96.
  • 7Li,F.;Ding,Y.;Gao,P.X.;Xin,X.Q.;Wang,Z.L.Angew Chemie,2004,116:5350.
  • 8Xu,C.X.;Sun,X.W.;Dong,Z.L.;Yu,M.B.Applied Physics Letters,2004,85:3878.
  • 9Tian,Z.;Voigt,J.A.;Liu,J.;Mchenzie,B.;Mcdermott,J.;Rodriguez,M.A.;Konishi,H.;Xu,H.Nature Materials,2003,2:821.
  • 10Jie,J.S.;Wang,G.Z.;Han,X.H.;Yu,Q.X.;Liao,Y.;Li,G.P.;Hou,J.G.Chemical Physics Letters,2004,387:466.

共引文献56

同被引文献76

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部