期刊文献+

反馈混沌遗传算法及其在约束优化中的应用 被引量:2

Chaotic Genetic Algorithm with Feedback and Its Applications to Constrained Optimzation
下载PDF
导出
摘要 针对现有遗传算法中普遍存在的早熟与收敛慢的问题,将混沌映射和后天强化学习策略引入到标准遗传算法中,提出了带反馈的混沌遗传算法.该算法通过混沌映射来保持演化群体良好的多样性;通过基于Baldwin效应的后天强化学习来克服纯粹的随机演化.对复杂约束优化问题——基准问题的数值实验验证了文中算法的高效性及鲁棒性. The existing genetic algorithms are generally lost in a dilemma between prematunty and stow-convergence. In order to solve this problem, a new chaotic genetic algorithm with feedback is proposed by introducing the chaotic mapping and the posterior reinforcement learning in the standard genetic algorithm. In this algorithm, the evolution population maintains a good diversity via the chaotic mapping, and the stochastic evolution is overcome by the posterior reinforcement learning based on Baldwin effect. Numerical experiments are finally carried out aiming at the complex constrained optimization problems, namely the benchmark problems. The results show that the proposed algorithm is effective and robust.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期19-23,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60374023) 广东省自然科学基金资助项目(04009475)
关键词 遗传算法 混沌 约束优化 多目标规划 eerato占优 BALDWIN效应 genetic algorithm chaos constrained optimization multi-objective prograrmning Perato dominant Baldwin effect
  • 相关文献

参考文献13

  • 1Goldberg D E.Genetic algorithms in search,optimization and machine learning[M].Reading,Massachusetts:Addison-Wesley,1989.
  • 2Mitchell M.An introduction to genetic algorithms[M].Cambridge:MIT Press,1996.
  • 3孙有发,陈世权,吴今培.一种非一致性的自适应遗传算法与应用[J].系统工程,2002,20(6):82-86. 被引量:9
  • 4Sun You-fa,Deng Fei-qi.Baldwin effect based self-adaptive generalized genetic algorithm[C]∥Proceedings of the Eighth International Conference on Control Automation,Robotics and Vision.Kunming:IEEE,2004:242-247.
  • 5Sun You-fa,Deng Fei-qi.Chaotic parallel genetic algorithm with feedback mechanism and its application in complex constrained problem[C]∥Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems.Singapore:IEEE,2004:596-601.
  • 6Lu Qing-zhang,Shen Guo-li,Yu Ru-qin.A chaotic approach to maintain the population diversity of genetic algorithm in network training [J].Computational Biology and Chemistry,2003,27:363-371.
  • 7王宁,蔚承建,盛昭瀚.基于嵌入混沌序列的遗传算法[J].系统工程理论与实践,1999,19(11):1-7. 被引量:21
  • 8Hinton G,Nowlan S.How learning can guide evolutions[J].Computers Systems,1987,1:495-502.
  • 9Belew R.Evolution,learning,and culture:computational metaphors for adaptive algorithms[J].Complex Systems,1990,4:11-49.
  • 10Siedlecki W,Sklansky J.Constrained genetic optimization via dynamic reward-penalty balancing and its use in pattern recognition[C]∥Proceedings of the Third International Conference on Genetic Algorithms.Fairfax,Virginia:George Mason University,1989:141-150.

二级参考文献19

  • 1孙有发.智能管理及其在科研项目评审中的应用研究[M].广州:华南理工大学,1991..
  • 2Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 1996,4(1):1~32.
  • 3Michalewicz Z. Genetic algorithms, Numerical optimization and constraints. In: Esheiman LJ, ed. Proceedings of the 6th International Conference on Genetic Algorithms. San Mateo: Morgan Kanfmann Publishers, 1995 151~158.
  • 4Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering,2000,186(2--4):311 ~338.
  • 5Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transaclons on Evolutionary Computation, 2000,4(3):284-294.
  • 6Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999,3(4):257~271.
  • 7Beyer H-G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2001,5(3):250--270.
  • 8Ono I, Kita H, Kobayashi S. A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self adaptation of crossover probabilities. In: Banzhaf W, Daida J, Eiben E, eds. GECCO'99:Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo: Morgan Kaufmann Publishers, 1999. 496~503.
  • 9Tsutsui S, Yamamura M, Higuchi T. Multi-Parent recombination with simplex crossover in real coded genetic algorithms. In:Banzhaf W, Daida J, Eiben E, eds. GECCO'99: Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo:Morgan Kaufmann Publishers, 1999. 657---664.
  • 10Kita H. A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms. Evolutionary Computation,2001,9(2):223~241.

共引文献81

同被引文献22

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部