摘要
根据loop代数和Jacobi恒等式的定义构造了一个多分量的loop代数GM,得到了一个多分量的可积族。且把速恒等式扩展并作用到这一广义loop代数上来。最后利用扩展的迹恒等式导出了(2+1)雏多分量可积系统的哈密顿结构。
A multi-component loop algebra GM is constructed in terms of the definition of loop algebra and Jaoohi identity, for which a multicomponent integrable hierarchy is given, And trace identity is extended to be useful to general loop algebra. Finally, Hamiltonian structure of the integrable system that is (2+1)-dimension and multi-component is worked out by applying extended trace identity to it.
出处
《科技信息》
2006年第08S期96-96,141,共2页
Science & Technology Information
关键词
迹恒等式
哈密须结构
多分量的可积系统
trace identity
Hamiltonian structure: multi-component integrable system