期刊文献+

诱导信息下基于博弈论的路径选择模型 被引量:9

The Route Choice Model Under the Traffic Information Guide Environment Based on Game Theory
下载PDF
导出
摘要 诱导信息下的路径选择模型无论是在宏观的交通规划领域,还是在微观的驾驶员行为机理研究过程中都具有重要的意史.通过分析出行者选择路径的过程,将博弈论中的静态多人博弈与路径诱导下的出行者的决策过程进行对比,引入求解蚋什均衡的划线法。采阐述出行者的路径选择模型,以求得到最接近实际的出行者在静态谤导信息下的路径选择模型;给出了基于博弈论的路径选择模型算法,井通过1个简单实例阐述了在静态诱导信息下出行者的博弈过程以覆求解纳什均衡的方法. No matter microscopic or macroscopic field, the model of route choice with travel information is essential for traffic research. For the purpose to open out the principle of route choice model under inducement information, we import the Game Theory to explain the complexity process in choice model. After analyzing the simulation between Game theory and process of route choice, we use the lineation method to solve the Nash Equilibrium, and the general arithmetic was given. At the last, there is a simple example to introduce the arithmetic. This thesis gives a new way to consider the route choice mechanism.
出处 《北华大学学报(自然科学版)》 CAS 2007年第1期88-91,共4页 Journal of Beihua University(Natural Science)
关键词 博弈论 纳什均衡 诱导信息 路径选择模型 Game theory Nash Equilibrium Travel information Route choice model
  • 相关文献

参考文献5

二级参考文献13

  • 1[1] Dijkstra E W. An appraisal of some shortest path algorithms. Operations Research,1959,17:395-412.
  • 2[2] Fu L, Rilett L R. Expected shortest paths in dynamic and stochastic traffic networks. Transportation Research Part B,1998,32(7):499-516.
  • 3[3] Hall R. The fastest path through a network with random time-dependent travel time. Transportation Science, 1986,20(3):182-188.
  • 4[4] Kaufman E, Lee J, Smith R L.Fastest paths in time-dependent networks for intelligent vehicle highway systems application. IVHS Journal, 1993,1(1):1-11.
  • 5[5] Mirchandani B P. Shortest distance and reliability of probabilistic networks.Computer and Operations Research,1976,(3):347-376.
  • 6[6] Ross M S. Introduction to probability models, Academic Press Inc. San Diego,CA.1989.
  • 7[1]Merchant D K, Nemhauser G L. A model and algorithm for the dynamic traffic assignment model. Transportation Science, 1978,12 (3):183~199
  • 8[2]Carey M. Optimal time-varying flows on congested networks. Operations Research, 1987, 35 (1): 58~69
  • 9[3]Friesz T L, Luque F J, Tobin R L, et al. Dynamic network traffic assignment considered as a continuous time optimal control problem. Operations Research,1989,37(6):893~901
  • 10[4]Bazaraa S M, Jarvis J J. Linear programming and network flows. New York: John Wiley & Sons, 1977. 474~506

共引文献26

同被引文献47

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部