期刊文献+

临界热流密度的人工神经网络预测法 被引量:2

Prediction of Critical Heat Flux by Using Artificial Neural Network
下载PDF
导出
摘要 本文成功地训练了3种用于预测临界热流密度(CHF)的人工神经网络,其输入参数分别是系统压力、质量流速、平衡含汽量;其输出参数是CHF。通过人工神经网络,分析了压力、流量、热平衡含汽量和进口过冷度对CHF的影响,且成功地将人工神经网络应用于CHF的预测中,预测结果与实验值符合很好。分析结果表明:人工神经网络训练的3种类型中,类型II的预测精度最高,可达±10%。 Three artificial neural networks(ANNs) are trained based on three types of databases to predict critical heat flux(CHF) in the present paper. The input parameters of the ANNs are the system pressure, mass flow rate and equilibrium quality/inlet subcooling, and the output is CHF. The detail effects of system pressure, mass flow rate, equilibrium quality and inlet subcooling on CHF are analyzed based on the trained ANNs. The ANNs are applied successfully for the predicting of CHF. The predicted results agree very well with experimental data. The analyzed results show that the ANN with the highest accuracy for predicting CHF is the one based on the type Ⅱ database in the three types: inlet, local and outlet conditions.
出处 《核动力工程》 EI CAS CSCD 北大核心 2007年第1期41-44,共4页 Nuclear Power Engineering
基金 陕西省自然科学基金(2003E217) 教育部留学归国人员基金(03)回国基金(05)
关键词 临界热流密度 人工神经网络 压力 质量流速 热平衡含汽量 Critical heat flux(CHF), Artificial neural ne.twork(ANN), Pressure, Mass flow rate, Thermal equilibrium quality
  • 相关文献

参考文献14

  • 1Yapo Y Embrechts M J,Cathey S T et al.Prediction of Critical Heat Flux Using a Hybrid Kohonen-Backpropagation Neural Network[C].Intelligent Engineering Systems through Artificial Neural Networks.Proc.ArtificiaI Neural Networks in Engineering(ANNIE'92),St.Louis,Missouri.USA,1992,2:853-858.
  • 2Moon S K,Chang S H.Classification and Prediction of the Critical Heat Flux Using Fuzzy Clustering and Artificial Neural Networks[J].Nuclear Engineering and Design,1994,150(2):151~161.
  • 3Moon S K,Baek W P,Chang S H.Parametric Trends Analysis of the Critical Heat Flux Based on Artificial Neural Networks[J].Nuclear Engineering and Design,1996.163(1):29~49.
  • 4Mazzola A.Integrating Artificial Neural Networks and Empirical Correlations for the Prediction of Water Subcooled Critical Heat Flux[J].Revue Generale de Thermique,1997,36(11):799~806.
  • 5韩浪,单建强.人工神经网络在圆管临界热流密度数据处理中的研究[J].原子能科学技术,2005,39(1):69-72. 被引量:1
  • 6黄彦平,单建强,陈炳德,朱继洲,郎雪梅,贾斗南.人工神经网络在圆管临界热流密度数据分析中的应用研究[J].核科学与工程,2003,23(1):45-51. 被引量:7
  • 7苏光辉,尚智,肖刚等.人工神经网络和小波分析在反应堆热工水力分析中的应用[R].中国核科技报告,CNIC-01423/XJTU0007.1999.
  • 8Kim H C,Baek W P.Chang S H.CriticaI Heat Flux of Water in Vertical Round Tubes at Low Pressure and Low Flow Conditions[J].Nuclear Engineering and design,2000,199(1):49-73.
  • 9Working Party of the Heat and Mass Transfer Section of the Scientific Council of the Academy of Sciences of the USSR.Tabular Data for Calculating Burnout When Boiling Water in Uniformly Heated Round Tubes[J].Teploenergetika,1976,23(1):90~92.
  • 10Groeneveld D C,Leung L K H,Kirillov P L et al.The 1995 Look-up Table for Critical Heat Flux in Tubes[J].Nuclear Engineering and Design,1996,163(1):1~23.

二级参考文献7

  • 1Collier JG. Convective Boiling and Condensation[M]. Oxford: McGraw-Hill Book Company,Clavendon Press, 1994. 325 -374.
  • 2Becker KM. Burnout Data for Flow of Boiling Water in Vertical Round Ducts, Annuli and Rod Clusters: AE-177[R]. Sweden: [s. n. ], 1965.
  • 3Thompson B, Macbeth RV. Boiling Water Heat Transfer in Uniformly Heated Round Tubes:A Compilation of World Data With Accurate Correlations : AEER-R-356 [R]. UK : UKAEA, 1964.
  • 4Becker KM, Strand G. Round Tube Burnout Data for Flow of Boiling Water at Pressures Between 30 and 200 Bar: KTH-NEL-14[R].Sweden : [s. n.],1971.
  • 5Hall DD. Evaluation of Subcooled Critical Heat Flux Correlations Using the PUBTPFL CHF Database for Vertical Upflow of Water in a Uniformly Heated Round Tube [J]. Nuclear Technology, 1997,117 : 234 - 247.
  • 6唐立山 谢云尤 等.非数值并行算法-模拟退火算法[M].北京:科学出版社,1997.91-103.
  • 7HaganMT DemuthHB BealeMH 戴葵(译).神经网络设计[M].北京:机械工业出版社,2002.119-166.

共引文献6

同被引文献15

  • 1谢春丽,夏虹,刘永阔,刘邈,张宝锋.BP神经网络改进算法在核电设备故障诊断中的应用[J].核动力工程,2007,28(4):85-90. 被引量:11
  • 2Kim H C, Chang S H. Development of a back propagation network for one-step transient DNBR calculations[J]. Annals of Nuclear Energy, 1997, 24(17): 1437-1446. DOI: 10.1016/s0306-4549(97)00051-0.
  • 3Koo B H, Kim H C, Chang S H. Development of real-time core monitoring system models with accuracy-enhanced neural networks[J]. IEEE Transactions on Nuclear Science, 1993, 40(5): 1347-1354. DOI: 10.1109/23.234549.
  • 4Lim D H, Yang H Y, Na M G. Monitoring minimum DNBR using a support vector regression model[J]. IEEE Transactions on Nuclear Science, 2009, 56(1): 286-293. DOI: 10.1109/tns.2008.2009216.
  • 5Na M G, Lee S M, Shin S H, et al. Minimum DNBR monitoring using fuzzy neural networks[J]. Nuclear Engineering and Design, 2004, 234: 147-155. DOI: 10.1016/j.nucengdes. 2004.08.022.
  • 6Lee S W, Kim D S, Na M G. Prediction of DNBR using fuzzy support vector regression and uncertainty analysis[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1595-1601. DOI: 10.1109/tns.2010.2047265.
  • 7AP 1000 design control document (Rev. 19) [R]. Westinghouse Electric Company, 2011.
  • 8刘永阔,夏虹,谢春丽,沈季.核电设备状态监测与故障诊断系统的研究[J].原子能科学技术,2008,42(3):200-205. 被引量:10
  • 9李忠武.数据挖掘中线性回归分析的研究[J].保山学院学报,2017,36(2):54-56. 被引量:3
  • 10周剑东,谢金森,曾文杰,于涛,陈珍平,赵鹏程,谢芹,刘紫静,谢超.基于决策树的堆芯物理参数预测研究[J].原子能科学技术,2020,54(2):296-301. 被引量:4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部