期刊文献+

基于调和均值的疲劳寿命经验分布函数

Empirical Distribution Function of Fatigue Life Based on Harmonic Mean
下载PDF
导出
摘要 该文基于调和均值的定义,应用积分概率变换,提出一个新的反映顺序疲劳寿命失效概率分布集中趋势的经验分布函数,并在此基础上给出极值型检验统计量及其不同显著度水平下的临界值;考虑疲劳寿命拟合实际情况,利用随机贝塔分布函数构建备择分布,提出不依赖分布形式的检验功效数值计算方法。理论分析和数值模拟得出基于调和均值经验分布函数的检验方法较常规的K-S检验具有更高的检验功效。 Employing the harmonic mean and the probability integral translation (PIT), this paper analyzes the skewness and kurtosis characteristics of the failure probability distributions of order fatigue life variables, proposes a new empirical distribution function (EDF) which represents the central tendency of the failure probability of order statistics, and then constructs a new modified-EDF test statistic based on the extreme discrepancy criterion. Monte Carlo method is employed to obtain the critical values corresponding to different significance levels and to conduct test power comparisons with a distribution-free method of test power computation. The results of numerical examples demonstrate the advantages related to the use of the suggested modified-EDF goodness-of-fit test especially for data of small and moderate sample sizes over traditional K-S test.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2007年第1期31-34,共4页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(10377007)
关键词 调和均值 经验分布函数 疲劳寿命 拟合检验 harmonic mean empirical distribution function fatigue life goodness-of-fit test
  • 相关文献

参考文献4

二级参考文献25

  • 1John R.Michael.The Stablized Probability Plot, Biometrika Vol70(1)(1983),PP11-17.
  • 2Tang Yincai. Approximated Parameter Estimation of Three-parameter Log-normal Distributions Based on Generalized Least Squares Method[J]. Journal of Shanghai Teachers' University 4(2001).
  • 3[1]Ihara C, Tanaka T. A stochastic damage accumulation model for crack initiation in high-cycle fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23 (5): 375 ~ 380.
  • 4[3]Tovo R. On the fatigue reliability evaluation of structural components under service loading. International Journal of Fatigue, 2001, 23(7):587 ~ 598.
  • 5[4]Xiong Y, Shi G. Stochastic damage growth model for fuselage splices with multisite damage. AIAA J, 2001, 39 (3): 498 ~ 503.
  • 6[5]Yang G B. Best compromise test plans for Weibull distributions with different censoring times. Quality and Reliability Engineering International, 1994. 10(5):411 ~ 415.
  • 7[7]Sandoh H, Fujii S. Designing an optimal life test with type Ⅰ censoring. Naval Research Logistics, 1991, 38 ( 1 ) :23 ~ 31.
  • 8[8]Bai D S, Chun Y R, Kim J G. Failure-censored accelerated life test sampling plans for Weibull distribution under expected test time constraint. Reliability Engineering & System Safety, 1995, 50 (1):61~ 68.
  • 9[10]Locks Mitchell O. How to estimate the parameters of a Weibull distribution. Quality Progress, 2002,35(8):59 ~ 64.
  • 10[12]Bugaighis M. Properties of the MLE for parameters of a Weibull regression model under type Ⅰ censoring. IEEE Transactions on Reliability, 1990, 39 ( 1 ): 102 ~ 105.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部