期刊文献+

ART2神经网络聚类的改进研究 被引量:2

Improvement of Clustering of ART2 Neural Network
下载PDF
导出
摘要 为进行快速动态层次聚类,通过分析自适应谐振理论(adaptive resonance theory,ART)神经网络的快速学习、主观设置警戒参数、输出无层次结构等优缺点以及自组织特征映射(self-or-ganizing feature map,SOFM)神经网络的侧反馈、不能动态聚类、输出无层次结构等优缺点的基础上,借鉴Hebb规则的思想,针对ART2神经网络的聚类算法进行了改进研究。通过结构描述、算法分析,该算法融合了ART2和SOFM的优点,克服其不足之处,以快速学习的方式形成可带有多层层次的动态聚类结构(不同的层次代表不同粒度的聚类),此外还降低了对警戒参数主观设置的要求,对于较粗粒度的聚类不再需要重新训练神经网络。并通过仿真实验证明该算法的有效性。 In order to achieve dynamic clustering with hierarchy structure, after analyzing the short-comings and advantages of adaptive resonance theory (ART) neural network, such as fast study, subjectively setting vigilance parameter and output without hierarchy structure; and after analyzing the shortcomings and advantages of Self-Organizing Feature Map (SOFM) , such as side-feedback, inability of dynamic clustering and output without hierarchy structure, improvement of clustering algorithm of ART2 neural network has been presented with the reference of Hebb Principle. By structure description and algorithmic analysis, this model incorporates the advantages of ART2 and SOFM and overcomes their shortcomings, obtains dynamic clustering structure with multilayer hierarchy structure by fast study (each layer denotes a category of different granularity ) ; this model also reduces the request of setting vigilance parameter and has no demand of retraining neural network of bigger granularity. Finally the effectiveness of the algorithm is demonstrated by simulation.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2007年第1期71-75,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60275020)
关键词 自适应谐振理论 神经网络 聚类 自组织特征映射 adaptive resonance theory neural network clustering selt-organozing feature map
  • 相关文献

参考文献6

  • 1Kantardzic M,闪四清,陈茵,程娃,译..Data mining concepts,models,methods and algorithms[M]..北京:清华大学出版社,,2003....
  • 2HaganMT DemuthHB BealeMH 戴葵 宋辉 潭明峰 等译.神经网络设计[M].北京:机械工业出版社,2002..
  • 3王莉,王正欧.TGSOM:一种用于数据聚类的动态自组织映射神经网络[J].电子与信息学报,2003,25(3):313-319. 被引量:28
  • 4Alahakoon D,Halgamuge S K,Srinivasan B.Dynamic self-organizing maps with controlled growth for knowledge discovery[J].Neural Networks,2000,11(3):601 -614.
  • 5AbhijitSP RobertBM.神经网络模式识别及其实现[M].北京:电子工业出版社,1999..
  • 6Davenport M P,Titus A.Multilevel category structure in the ART2 network[J].Neural Networks,2004,15 (1):145-158.

二级参考文献4

  • 1[1]M.S. Chen, J. Han, P. S. Yu, Data niining, An overview fiom a database perspective, IEEE Trans. on Knowledge & Data Engineering, 1996, 8(6), 866-883 .
  • 2[2]T. Kohonen, Self-Organization and Associate Memory, Berlin, Springer-Verlag, 1984, Chapter 5.
  • 3[3]D. Alahakoon, S. K. Halgamuge, Dynamic self-organizing maps with controlled growth for knowledge discovery, IEEE Trans. on Neural Networks, 2000, NN-11(3), 601-614.
  • 4[4]D. Choi, S. Park, Self-creating and organizing neural networks, IEEE Trans. on Neural Networks,1994, NN-5(4), 561-575.

共引文献118

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部